KNOW YOUR IoT SECURITY RISK

How Hackable is Your Smart Enterprise?

ForeScout IoT Enterprise Risk Report explores common IoT devices that make organizations vulnerable to dangerous – if not disastrous – attacks.
IoT is here to stay, but the proliferation and ubiquity of these devices in the enterprise is creating a much larger attack surface and easy entry points for hackers to gain access to the network. The solution starts with real-time, continuous visibility and control of devices the instant they connect -- you cannot secure what you cannot see.

Michael DeCesare, ForeScout President & CEO
By 2018, two thirds of enterprises will experience IoT security breaches (c)

6.4 BILLION connected devices are in use today globally (a)

65% of enterprises have actively deployed IoT technologies as of June 2016 (b)

The number of connected devices will reach more than 20 BILLION by 2020 (a)
Industry attention has narrowed in on the threat of commonly known Internet of Things (IoT) devices and their potential safety implications to the home, but there is as much, if not more, to consider when exploring IoT threats in the enterprise.

Research into seven common enterprise IoT devices revealed that their core technologies, fundamental development methods and rapid production makes implementing proper security within the software, firmware and hardware a complex, overlooked and often neglected task.
The identified seven IoT devices can be hacked in as little as three minutes, but can take days or weeks to remediate.

Should any of these devices become infected, hackers can plant backdoors to create and launch an automated IoT botnet DDoS attack.

Cybercriminals can leverage jamming or spoofing techniques to hack smart enterprise security systems, enabling them to control motion sensors, locks and surveillance equipment.

With VoIP phones, exploiting configuration settings to evade authentication can open opportunities for snooping and recording of calls.

Via connected HVAC systems and energy meters, hackers can force critical rooms (for example, server rooms) to overheat critical infrastructure and ultimately cause physical damage.
DISASTROUS
Could cause irreversible damage, invade user privacy, gain access to private corporate information or destroy critical equipment.

DISRUPTIVE
Can disrupt corporate and operational processes.

DAMAGING
Would allow snooping around a corporate network or extracting private credentials.

IP-Connected Security Systems

IP-Connected Infrastructure:
Climate Control & Energy Meters

Smart Video Conferencing Systems

Connected Printers

VoIP Phones

Smart Fridges

Smart Lightbulbs
When successfully hacked, all of these devices are a gateway into the broader enterprise network. Breaking it down even further, IoT hacks can lead to:

Danger Scenarios

- Tampering with temperature controls and destroying critical equipment
- Spying via video and microphone
- Extracting Wi-Fi credentials to carry out further attacks
- Disabling to allow physical break-ins
- Snooping on calls
- Accessing private company and user information
- Obtaining user credentials
- Obtaining user credentials
EXPLORING SEVEN COMMON IoT DEVICES

Where Do The Vulnerabilities Lie?
IoT DEVICE RISKS

IP-Connected Security Systems

Use wireless communication to connect with other smart devices for easy entry and access, which can open the floodgates for crafty hackers.

Many use proprietary radio frequency technology that lacks authentication and encryption to communicate. They also have dependencies on some cloud services and are connected to the internet.

Attackers can form radio signals to send false triggers and access system controls.

Weak credentials can be used as ‘bouncing off’ points to attack other systems.

Most use radio signals that are easy to detect and fail to employ frequency hopping techniques, leaving them open to jamming and spoofing.

Jamming or spoofing an enterprise security system could allow criminals to turn off motion sensors, remotely open locks, or redirect/switch off surveillance equipment.

(See references page #1-3)
IoT DEVICE RISKS

IP-Connected Infrastructure: Climate Control & Energy Meters

HVAC systems provide an avenue for hackers to gain network access. Enterprises are also using smart electric meters to monitor wireless energy – creating additional risk.

- HVAC systems are typically on the same network that internal systems are connected to, which hackers can easily access to intercept data, escalate privilege and carry out further attacks.

- Attackers can force critical rooms (for example, server rooms) to overheat and cause physical damage.

- Smart energy meters can allow attackers to alter the reported energy levels of a company - potentially leading to fraudulent accounting and metering.

- IP-connected infrastructure uses wireless technology that is often accessible to anyone within range.

(See references page #4)
IoT DEVICE RISKS

Smart Video Conference Systems

Enable internet-based streaming, conference calling and screen-sharing, often only requiring the click of a button for users to share screens – and for hackers to commandeer it.

Vulnerable to exploits that allow remote attackers to control any of the apps on the system, take over social and communication apps, record audio and video.

Since they are wired Ethernet or Wi-Fi connected, hackers have access to sensitive places like boardrooms, C-Level offices and conference rooms that are not often accessible by outside visitors.

Similar to all software, most use common OSs, which have significant overflow vulnerabilities.

Buffer overflow allows the Smart TV to be accessible from behind a router or firewall, exposing it to intruders from anywhere on the Internet.

Smart TVs connect to the local network over IP and also serve as a pivot point for hackers to gain full network access.

Attackers have full access to all software, memory and hardware, exposing the microphone, camera and stored credentials.

Attackers can exploit other systems on the network entirely from a shell they’ve compromised on the TV.

(See references page #5-11)
IOT DEVICE RISKS

Connected Printers

Nearly all printers are networked over IP, making them accessible from virtually any computer on the network – and a welcome mat to hackers to infiltrate the enterprise.

Without physical access, hackers can comprise printers to siphon private documents printed through them. *This is almost undetectable without proper security and monitoring.*

By accessing specially crafted URLs that evade authentication, attackers can visit pages that expose the printer’s credentials.

If printers are on a public network or attackers are on the same Wi-Fi network, they can send a specially crafted Simple Network Management Protocol (SNMP) packet to obtain the admin password, and gain full control of the printer. Many exploitable issues are are not resolvable without updates to firmware or an intrusion detection system.
IoT DEVICE RISKS

VoIP Phones

VoIP phones leverage the network for many sophisticated features that makes communication easy, not only for employees – but also malicious hackers.

- Complex routing exposes phones to remote snooping and some can be activated as a speakerphone with no visible indication.
- Hackers can exploit configuration settings to evade authentication and then update the phone, allowing them to listen to phone conversations or make calls.
- Attackers only need to know the IP address of the phone to be able to access it.

(See references page #22-23)
Due to lax certificate checking, attackers on the same network could conduct a MITM (man-in-the-middle) attack to intercept communication and modify traffic between a client and server. This can be done by injecting spoofed Address Resolution Protocol (ARP) requests or Domain Name System (DNS) responses, both of which are critical to IP networks today and provide no method of authentication or encryption. This grants attackers access to any of the integrated enterprise applications, and the user credentials associated with that account.

IoT DEVICE RISKS

Smart Fridges

Wi-Fi-enabled refrigerators with LCD screens have access to widely used operational apps (such as scheduling applications, calendars and notification systems) and the credentials stored within.
Mesh network communication channels can be sniffed by attackers. By sniffing the network, attackers only need to be within Wi-Fi range of the smart bulb with no original access to the network.

Hackers can extract password-protected Wi-Fi credentials without being on the network, allowing them to gain access to other systems and devices in the enterprise – from laptops to smartphones and even network-connected manufacturing systems.

Some bulbs have been shown to send Wi-Fi credentials in plain text, making extraction possible.

IoT DEVICE RISKS
Smart Lightbulbs

Smart lightbulbs operate on Wi-Fi and proprietary mesh networks – they can easily integrate into other connected systems that can be controlled by external devices and hackers.
IoT threats could spread through networks and the internet. If a threat were to successfully infect a device and infiltrate one network, it could spread to an entirely separate, segregated network - just by being within wireless range of another IoT device, despite no previous communication between the two.

IoT threats would work even more effectively by targeting the specialized wireless communication protocols that IoT devices share, such as Wi-Fi, Bluetooth, ZigBee.
Visualizing an IoT Attack
Research Methodology

Commissioned by ForeScout Technologies, the IoT Enterprise Risk Report employed the skills of Samy Kamkar, one of the world’s leading ethical hackers, to investigate the security risks posed by IoT devices in enterprise environments. The report sought to uncover vulnerabilities in enterprise-grade technology, utilizing both physical testing situations, as well as drawing from peer-reviewed industry research.

Kamkar conducted extensive research (including reviewing datasheets, previous hacks, peer-reviewed/industry research, known CVEs and first-hand conversations with industry peers) to evaluate each device, looking into vulnerabilities of the following: inputs, outputs, physical ports, communication protocols, manufacturing techniques and software and/or firmware involved.
While IoT devices make it possible for organizations to run faster and more efficiently, they are too often used with little regard to their security risk. The rush to deliver new types of IoT technologies sacrifices security – almost 100 percent of the time. Once these devices are on the network, it’s easy for malware to compromise them, or for a hacker to gain access through them and steal critical information.

It’s a cybersecurity challenge and an opportunity to help CISOs fill the ensuing security gaps.

Businesses need an agentless approach to be able to manage their IoT devices – helping them to see the devices in real time. Enterprise IoT devices, some of which were examined in this analysis, are not designed with security agents, and IT departments often turn a blind eye when new devices are added to the corporate network to avoid the hassle of re-deploying their security protections.

In the age of IoT, visibility and control of devices on the network is a must have, not a nice to have.
Best Practices

IoT security starts with full visibility and control over devices as soon as they connect to the corporate network.

DISCOVER AND CLASSIFY
IoT devices the instant they connect to the network

CONTROL
network access based on device type, posture and behavior

ORCHESTRATE
integrate islands of security; leverage existing investments for better protection
About ForeScout

ForeScout Technologies is transforming security through visibility. ForeScout offers Global 2000 enterprises and government organizations the unique ability to see devices, including non-traditional devices, the instant they connect to the network.

Equally important, ForeScout lets you control these devices and orchestrate information sharing and operation among disparate security tools to accelerate incident response. Unlike traditional security alternatives, ForeScout achieves this without requiring software agents or previous device knowledge. The company's solutions integrate with leading network, security, mobility and IT management products to overcome security silos, automate workflows and enable significant cost savings. As of January 2016, more than 2,000 customers in over 60 countries improve their network security and compliance posture with ForeScout solutions.

Learn more at ForeScout.com
Glossary

IoT Internet of Things
IP Internet Protocol
VoIP Voice Over Internet Protocol
OS Operating System
SNMP Simple Network Management Protocol
MITM Man-in-the-Middle
ARP Address Resolution Protocol
DNS Domain Name System
OT Operational Technology
IT Information Technology
DDoS Distributed Denial of Service
2) Jmaxxz, “Backdooring the Frontdoor.” 7 August 2015.
4) “CVE-2016-4529,” CVE. 5 May 2016.
10) Russon, M. “It’s official, your smart TV can be hijacked: Malware is holding viewers to ransom,” International Business Times. 12 January 2016.
11) Metzger, M. “Millions of smart TVs and remote control apps vulnerable,” SC Magazine. 9 December 2015.
24) Venda, P. “Hacking DefCon 23’s IoT Village Samsung fridge,” Pen Test Partners. 18 August 2015.