
Forescout
Connect Plugin

Application Building and Deployment Guide

Version 1.5

eyeExtend Connect Module:

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 2

Contact Information
Forescout Technologies, Inc.

190 West Tasman Drive

San Jose, CA 95134 USA

https://www.Forescout.com/support/

Toll-Free (US): 1.866.377.8771

Tel (Intl): 1.408.213.3191

Support: 1.708.237.6591

About the Documentation
 Refer to the Technical Documentation page on the Forescout website for additional

documentation: https://www.Forescout.com/company/technical-documentation/

 Have feedback or questions? Write to us at documentation@forescout.com

Legal Notice
© 2021 Forescout Technologies, Inc. All rights reserved. Forescout Technologies, Inc. is a
Delaware corporation. A list of our trademarks and patents can be found at
https://www.Forescout.com/company/legal/intellectual-property-patents-trademarks. Other
brands, products, or service names may be trademarks or service marks of their respective
owners.

2021-02-24 12:01

https://www.forescout.com/support/
https://www.forescout.com/company/technical-documentation/
mailto:documentation@forescout.com
https://urldefense.proofpoint.com/v2/url?u=https-3A__www.forescout.com_company_legal_intellectual-2Dproperty-2Dpatents-2Dtrademarks&d=DwMFAg&c=L5E2d05je37i-dadkViuXA&r=Z3cI4QPLlfMimB_63ipHyFuWSHGqqAs50hjX-2X1CEw&m=ypFjb5tb21hH81CxdGe-3FT8l4QXZe-hzuDh-eBT-wQ&s=ATQ1mJb4KkN8L9fn2BnpRuwmDWJcze7zyqTbG1PTwkc&e=

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 3

Table of Contents
About the Connect Plugin ... 5

Connect User Interface Overview ... 7

Build an App with Connect ... 13
Define system.conf File ... 13

Define Name, Version, and Author in system.conf 15
Define User Interface Panels and Fields in system.conf 17
Summary of system.conf Rules .. 34

Define property.conf File ... 35
Define Name in property.conf .. 36
Define Property Groups in property.conf .. 36
Define Properties in property.conf .. 37
Define Action Groups in property.conf ... 45
Define Actions in property.conf .. 46
Map Scripts in property.conf .. 52
Define Policy Templates in Connect ... 53
Define Policy Template Group in property.conf ... 54
Define Policies in property.conf .. 55
Define Icons in Connect .. 56

Create Policy Template XML File for Connect .. 58
Write Python Scripts for Connect .. 59

About Python Scripting for Connect .. 60
Test Script for Connect.. 62
Polling Script for Connect .. 63
Action Script for Connect ... 64
Property Resolve Script for Connect .. 65
Authorization Script for Connect ... 66
Use App Instance Cache in Connect Scripts ... 67
Use Certificate Validation in Connect Scripts .. 67

Use the Connect Web Service .. 68
Create a Connect App ... 79

Deploy an App with Connect ... 81
Download a Connect App from GitHub .. 81
Install Connect Plugin ... 84
Connect Add-On Optional Module ... 85

Connect User Interface Details ... 87
Connect Pane Details .. 88

Columns in Connect Pane .. 88
Buttons in Connect Pane ... 90
Menu in Connect Pane ... 97

System Description Dialog Box Details .. 99
Columns in System Description Dialog Box .. 100
Buttons in System Description Dialog Box ... 101
Menu in System Description Dialog Box ... 114

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 4

Configure Policy Templates in Connect .. 115

Appendix A: Sample Connect Files.. 121
Sample system.conf File .. 121
Sample property.conf File .. 124
Sample Policy Template .xml File for Connect .. 132
Sample Connect Script Files ... 133

Sample Test Script for Connect .. 134
Sample Polling Script for Connect ... 135
Sample Resolve Script for Connect ... 136
Sample App Instance Cache Script for Connect .. 138
Sample Add a User Action Script for Connect ... 140
Sample Delete a User Action Script for Connect 143
Sample Authorization Script for Connect ... 144

Appendix B: Swagger User Interface .. 146

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 5

About the Connect Plugin
The Connect Plugin provides an infrastructure for integrating third-party vendors
with the Forescout platform. Use Connect to create third-party vendor integrations
quickly. Use this guide to build and deploy applications.

Audience

The audience for Connect is technical people who want to create third-party vendor
integrations, such as:

 Forescout users who want to build custom integrations

 Forescout experts

 Forescout partners

 Third-party developers who want to build integrations with Forescout

The audience needs the following:

 Knowledge of the Forescout platform

 Beginner to intermediate skills with Python scripting

 Knowledge of RESTful API concepts

The following knowledge may also be helpful:

 Forescout platform’s Open Integration Module (OIM)

 Third-party vendor APIs

This guide also supports a non-technical user, one who configures the applications
built by the technical audience.

About this Guide

This guide has two parts. Build an App with Connect describes how to define a third-
party vendor integration with Connect. It is intended for app developers and
describes how to create an app.

Deploy an App with Connect describes how to deploy an app. It is intended for app
users and describes downloading and installing an app, licensing, and configuring.
The Connect User Interface Overview and Connect User Interface Details are also
relevant topics for this user.

What an App Builder Does

An app builder does the following:

 Defines content in configuration files for the system description, which is the
connection to the third-party vendor, as well as the properties, actions, and
policy templates for the integration

 Writes Python scripts to accomplish tasks in the Forescout platform such as
resolve properties, take actions, or poll for endpoints

 Creates an application (app) by putting the configuration files and Python
scripts in a zip file

 Imports the app into the Connect Plugin

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 6

The result is a user interface in which an app user configures the connection and the
policies or takes actions in Connect for that integration.

Supported Forescout Platform Version

The following table lists the Forescout platform version that works with each version
covered by this guide.

Version Forescout Platform Version

1.5 Minimum version: 8.2.2

Customer Support

The Connect Plugin is supported by Forescout Customer Support. See
https://forescout.force.com/support/s/.

Connect Apps, including those provided by Forescout, are not supported by
Forescout.

Architecture

The Connect Plugin lets you import apps that solve specific use cases for a third-
party integration. The architecture has the following components.

At the base of the architecture is the Forescout platform infrastructure, including the
Forescout Console and CounterACT® Appliances.

The Connect Plugin software is deployed on a CounterACT Appliance and installed
with a .fpi file, similar to other plugins or eyeExtend modules.

To run the scripts in an app, a Python process is started. The Python server runs on
a CounterACT Appliance and is shared by all apps.

Apps contain the configuration files and Python scripts for a specific integration.

About Apps

Apps contain the following:

 System configuration file (system.conf): a configuration file in JSON format
that contains information that a user would need to configure an integration.
The system.conf file determines the panels and fields that are displayed in the
Connect pane in the Forescout Console. For example, the system.conf file
might specify that an integration needs an Add Connection panel with fields
for a URL, username, and password, an Assign CounterACT Devices panel,
and a Proxy Server panel.

https://forescout.force.com/support/s/

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 7

 Property configuration file (property.conf): a configuration file in JSON format
that contains properties specific to the integration you want to create. The
property.conf file also defines actions, policy templates, and maps scripts.
Script mapping ties the properties and actions in the property.conf file to the
Python scripts.

 Python script: a script file to solve a specific use case. There can be multiple
scripts. For example, one script might resolve properties, another might take
actions, and a third might poll for endpoints.

 In this guide, the system configuration file and property configuration file are
referred to as system.conf and property.conf, however, system.json and
property.json are also accepted file names. The suffixes do not have to
match, for example, an app can have a property.conf and a system.json file.

At a minimum, an app contains three files:

 system.conf

 property.conf

 one Python script

All the files are put in a zip file to be imported into Connect.

 In this guide, the app examples refer to Cylance (even though the new name
is BlackBerry Protect).

Connect User Interface Overview
This topic provides an overview of the user interface.

After Connect is installed, Connect is displayed under Options. See Install Connect
Plugin.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 8

Connect Pane Overview

Initially, the Connect pane is blank. No apps have been imported yet and no system
descriptions have been configured yet.

There are several buttons on the Connect pane:

The buttons on the Connect pane are as follows:

Button Description

Import Import an app

Edit Edit an app

Update Update an app

Remove Remove an app

Start Start an app

Stop Stop an app

Authentication Configure authentication for Connect web service

The Import and Edit buttons are briefly described in this overview. All the buttons
are described in Connect User Interface Details.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 9

Select Import to import apps into Connect. Apps are in zip or eca format. They can
be in any folder. The following example shows a .zip file, which contains the files for
the app.

Apps that have been signed by Forescout are in a .eca file, which contains a data.zip
file and a signature file.

The data.zip file contains the files for the app.

After an app is imported, the System Description dialog box opens. It is initially
blank. See System Description Dialog Box Overview for details.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 10

After the system description for an app is configured, it is displayed in the Connect
pane. There can be multiple apps displayed in this pane.

 Third-party vendor integrations are displayed inside the Connect pane, not
on the left under Options.

If the configuration has not been saved, select Apply to enable the Start button,
which starts an app and the Stop button, which stops an app.

You can select an existing app and then select Edit to open the System
Description dialog box.

System Description Dialog Box Overview

If no system descriptions have been configured yet, the System Description dialog
box is blank.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 11

There are several buttons for a system description as follows:

The buttons on the System Description dialog box are as follows:

Button Description

Add Add a system description

Edit Edit a system description

Remove Remove a system description

Test (Optional) Test a system description

Refresh Refresh app features

Import Import a system description

Export Export a system description

This overview describes the Add button. The other buttons are described in Connect
User Interface Details.

Select Add on the System Description dialog box to add a system description,
which defines a connection to a third-party vendor. The system.conf file determines
the configuration panels and the fields on each panel that can be configured when
you select Add.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 12

The user configuring the system description enters the information on the panel.

Select Next to display the next configuration panel that is defined in the system.conf
file.

The user configuring the system description enters the information on the panel.

Select Next to display the next configuration panel that is defined in the system.conf
file. There can be multiple panels.

Then select Finish.

After a system description is configured, it is displayed in the System Description
dialog box.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 13

Build an App with Connect
This topic describes how to define a third-party vendor integration with Connect. It is
intended for app developers and describes how to create an app. See the following:

 Define system.conf File

 Define property.conf File

 Create Policy Template XML File for Connect

 Write Python Scripts for Connect

 Use the Connect Web Service

 Create a Connect App

Define system.conf File
The system configuration or system.conf file contains information that a user needs
to configure an integration. The file is in JSON format. You can use any text editor to
edit it, such as Notepad++.

The system.conf file determines the panels and fields that are displayed in the user
interface. For example, the system configuration file might specify that an
integration needs a Connection panel with several fields, an Assign CounterACT
Devices panel, and a Proxy Server panel.

The system configuration file must be named either system.conf or system.json. It
has the following sections:

 App information, such as name, version, and author. See Define Name,
Version, and Author in system.conf.

 Definitions of the panels and the fields in the user interface. See Define User
Interface Panels and Fields in system.conf.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 14

The following is a sample system.conf file (split into two parts). Four panels have
been defined. The first panel has been defined with seven fields.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 15

Define Name, Version, and Author in system.conf
Define “name”, “version”, and “author” in the system.conf file, all of which are
required fields. There are also fields to define an optional, predefined Test button
and to enable the Connect web service.
{

 "name":"appname",

 "version":"1.0.0",

 "author":"Firstname Lastname",

 "testEnable":true,

 "web service":true,

Name, Version, and Author in User Interface

The name, version, and author defined in the system configuration file are displayed
in the user interface on the Connect pane.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 16

Test Button in User Interface

If enabled, the Test button is displayed on the System Description dialog box.

The Test button can be used to test connectivity to a third-party vendor through a
Python script.

Web Service Enabled in User Interface

If the Connect web service is enabled, there is a check box in the Web Service
Enabled column in the Connect pane.

In addition, the Authentication button is available when an app that has the web
service enabled is selected in the Connect pane.

Parameter Details for Name, Version, Author, and Test Button

The parameters in the system configuration file are as follows:

Parameter Description

“name” (Required) The name of the app. Each app must have a unique name. The
name in the system.conf and property.conf files must match.
The name can contain letters (uppercase and lowercase), numbers, spaces,
and special characters, but not the underscore character (_).
Names are used in various places in configuration files and Python scripts.
Select a specific name rather than a generic name.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 17

Parameter Description

“version” (Required) The version of the app.
The format of the version can be one, two, or three integers with a period
as a separator, for example:
 1
 1.0
 1.0.1

“author” (Required) The author of the app.
The author can contain letters (uppercase and lowercase), numbers,
spaces, and special characters.

“testEnable” (Optional) The device test button. If set to true, a Test button is displayed
in the System Description dialog box.

“web service” (Optional) The Connect web service. If set to true, the web service is
enabled. The default is false. See Use the Connect Web Service for details.

Edit Name, Version, and Author

To edit the system.conf file:

1. Specify a name, version, and author by entering the text within the quotation
marks, for example:

 "name":"Cylance",

 "version":"1.0.0",

 "author":"Thomas Smith",

2. (Optional) To display the Test button on the System Description dialog box,
keep the following:
"testEnable":true,

To not display the Test button on the System Description dialog box, either
replace true with false or remove “testEnable” from the system.conf file.

3. (Optional) To enable the Connect web service, replace false with true as
follows:
"web service":true,

Define User Interface Panels and Fields in system.conf
The rest of the system.conf file defines the configuration panels and fields needed in
the user interface to define the system description of the integration.

In the following sample configuration (split into two parts), there are four panels.
Two of the panels (the second and third) are predefined. The first panel is a custom
panel with seven fields. The first four fields on that panel are defined using several
parameters, while the fifth, sixth, and seventh fields on that panel are predefined.
The fourth panel has two predefined fields.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 18

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 19

Panels and Fields in User Interface

When you select Add in the System Description dialog box, the first configuration
panel defined in the system.conf file is displayed. For example, the following panel
has several fields as well as a Validate Server Certificate checkbox.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 20

When you select Next, the second configuration panel defined in the system.conf file
is displayed, for example, the predefined Assign CounterACT Devices panel.

When you select Next, the third configuration panel defined in the system.conf file is
displayed, for example, the predefined Proxy Server panel.

See “rate limiter” Field and “host discovery” Field for the fourth panel defined in this
sample configuration.

When you select Finish, the system description is configured.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 21

Parameter Details for Panels and Fields

The parameters for “panels” and “fields” in the system configuration file are as
follows:

Panel Field Description

“panels” (Required) The definition of the configuration panels in the
user interface.
In this sample configuration, there are four panels:
 "title":"Cylance Connection"—a custom panel
 "focal appliance":true—a predefined panel
 "proxy server":true—a predefined panel
 "title":"Cylance Options"—a custom panel
The value is a JSON array. Each element of the JSON array
is a JSON object.

 “title” (Required) The title of a custom panel.

 “description” The description of a custom panel.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 22

Panel Field Description

 “fields” (Required) The fields of a custom panel. In this sample
configuration there are several fields that start with
“display”, as well as predefined fields.
The value is a JSON array. Each element of the JSON array
is a JSON object.
Use the following parameters to define fields:
 “display”—(Required) The label of the field, which will

be displayed on the left of the field in the user
interface, such as URL or Proxy Server Port.

 “field ID”—(Required) The internal, unique name of the
field, in ASCII characters. It must start with
connect_<appname>. The <appname> must consist of
all lowercase letters of the name defined in the app
without any spaces or underscores. For example, the
<appname> for VMware AirWatch would be
vmwareairwatch. Field ID values are global variables.

 “type”—(Required) The type of the field. The valid
types are: shortString, longString, ip, integer, boolean,
encrypted, and option. See “type” Parameter Details.

 “mandatory”—(Required) When set to true, the field is
mandatory in the user interface, which means that
when it is configured, the field must not be empty. See
“mandatory” Parameter.

 “add to column”—When set to true, you can select the
field from the Add/Remove Columns dialog box. You
cannot set this parameter to true if the field type is
encrypted. See “add to column” Parameter in User
Interface.

 “show column”—When set to true, you can display the
field as a column in the System Description dialog
box, if “add to column” is also set to true. See “show
column” Parameter in User Interface.

 “identifier”—When set to true, the value of the field
must be unique. For example, for a URL. See Error
Message for “identifier” Parameter in User Interface.

 “tooltip”—The text for the tooltip in the user interface.
 “value”—The value for a field that is prepopulated with

a default, such as an actual URL. For example, to
prepopulate the Cylance URL, use:
"value":"https://protectapi.cylance.com"

The predefined fields are:
 “certification validation”—When set to true, the

predefined Validate Server Certificate checkbox is
displayed. See “certification validation” Field.

 “app_instance_cache”—When set to true, the
predefined refresh interval field for app instance cache
data is displayed. See “app_instance_cache” Field.

 “authorization”—When set to true, the predefined
Authorization Interval field is displayed. See
“authorization” Field.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 23

Panel Field Description

“focal
appliance”

 (Required) The predefined focal appliance panel.
If set to true, a focal appliance panel is displayed as a
configuration panel. It cannot be set to false because it is a
required panel.
See Assign CounterACT Devices Panel Details.

 “title” (Required) The title of the panel, which is the predefined
focal appliance panel.

 “description” The description of the focal appliance panel. HTML
formatting can be used in the description, for example, to
create multiple paragraphs.

“proxy server” (Optional) The predefined proxy server panel.
If set to true, a proxy server panel is displayed as a
configuration panel.
See Proxy Server Panel Details.

 “title” (Required) The title of the panel, which is the predefined
proxy server panel.

 “description” The description of the proxy server panel. HTML formatting
can be used in the description, for example, to create
multiple paragraphs.

Define Panels and Fields

Define at least two panels with one field on each panel by replacing the text in
quotation marks for “panels” and “fields” in the sample system.conf file. See Sample
system.conf File.

In the user interface, there will be at a minimum, a Next button on the first panel
and a Finish button on the second panel.

It is recommended that you put the most important fields in the first panel, such as
IP address, URL, or username/password.

You can define many parameters for each field. Four parameters for each field are
required: “display”, “field ID”, “type”, and “mandatory”.

To define four fields on a panel, you need four field definitions in the system.conf
file.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 24

In the following sample configuration, the Cylance Connection panel is defined with
four fields. The definition of each field uses different parameters. See Parameter
Details for Panels and Fields.

“mandatory” Parameter

It is recommended that at least one field in the first panel have the “mandatory”
parameter set to true. Mandatory means that when the field is configured in the user
interface, it must not be empty.

It is also recommended that you put the most important fields in the first panel, such
as IP address, URL, or username/password, which are typical uses of the
“mandatory” parameter.

An error message is displayed for a “mandatory” field if nothing is entered in the
user interface when Next is selected.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 25

Error Message for “identifier” Parameter in User Interface

If a field is “identifier”, the value of the field must be unique when it is configured in
the user interface. For example, if the field is a URL, it must be unique.

Only one “identifier” is allowed in a system.conf file.

An error message is displayed for an “identifier” field if the same value is entered in
the user interface when Next is selected.

 “show column” Parameter in User Interface

The “show column” parameter results in fields being displayed as columns in the
System Description dialog box. In the following example, there is one column.

When “show column” is set to true, the field is displayed as a column in the System
Description dialog box, if “add to column” is also set to true.

“add to column” Parameter in User Interface

The “add to column” parameter results in the following menu when you right-click in
the System Description dialog box.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 26

If you select Add/Remove Columns, you can select columns to add or remove
from the Available Columns and Selected Columns tables.

Select OK to see the selected columns displayed in the System Description dialog
box.

If the field type is “encrypted”, you cannot add it as a column. This prevents the
display of passwords in a column.

At least one field in a system description must have the “add to column” parameter
set to true or an error message is displayed.

 “type” Parameter Details

The “type” parameters are as follows:

Type Description

“shortString” A string field, consisting of one row of editable text. Use this type for a
username or a URL.

“longString” A string field, consisting of five rows of editable text. Use this type for a
multi-line field, such as a description.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 27

Type Description

“ip” An IP field. Use this type for an IPv4 address.

“integer” An integer field, which can be a number from 1 to 2,147,483,647. Use this
type for a list of numbers. You can either scroll to select a number or type
a number in the field.

“boolean” A Boolean field. Use this type to create a checkbox that takes only a “true”
(checked) or “false” (unchecked) value.

“encrypted” An encrypted field, in which the values are encrypted. This field type also
creates a field to verify the value. Use this type for a password.

The two values are checked to see if they match.

“option” An option field containing a drop-down menu. Use this type for a
selectable list.
In addition to specifying the type, you also must specify the name and
value of the options. The following sample “option” definition produces the
user interface on the right.

“certification validation” Field

The “certification validation” field is predefined and results in the following checkbox
on a panel in the user interface.

Only one “certification validation” field is allowed in a system.conf file.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 28

If this checkbox is selected during configuration, the identity of the third-party server
is validated before establishing a connection. If this checkbox is not selected during
configuration, certificate-based authentication is disabled and self-signed certificates
are accepted.

Trusted certificates must be uploaded in the Forescout Console to Certificates >
Trusted Certificates. Upload the entire certificate chain. For more information
about certificates, refer to “Configuring the Certificate Interface” in the Forescout
Administration Guide.

Certificates in Connect can be used by all apps.

“app_instance_cache” Field

The following is a sample configuration of an application instance cache field that can
be defined in the system.conf file. It uses a predefined parameter named
“app_instance_cache”.

You can store and retrieve non-endpoint data from a third-party product (the data is
not associated with an endpoint).

The value is stored as a string type of system description field, which you can save in
any format, such as a JSON array. It is retrievable in property resolve, action, and
discovery scripts using params.get(“connect_app_instance_cache”).

The different types of scripts (property, action, polling) can access the data at the
per configuration instance of the app.

For example, you can use this functionality to get a list of all users, then use the list
in an action script. See Use App Instance Cache in Connect Scripts.

The predefined “app_instance_cache” field lets you configure the interval of how
often you want to refresh the data.

You also need to specify the script used for retrieving the data from the third-party.
The script must be mapped in the property.conf file. See Map Scripts in
property.conf.

When app instance cache is defined in the system.conf file, the Refresh button on
the System Description dialog box is enabled to let you manually trigger a refresh.
See Refresh App Features.

Only one “app_instance_cache” field is allowed in a system.conf file.

The parameters of the app_instance_cache field are as follows:

Parameter Description

“app_instance_cache” (Required) When set to true, indicates an integer field for
configuring the app instance cache data refresh interval, in minutes.

“display” (Required) The label of the field, which will be displayed on the left
of the field in the user interface.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 29

Parameter Description

“min” (Optional) The minimum value of the field. If none is set, “min”
defaults to 1.

“max” (Optional) The maximum value of the field. If none is set, “max”
will be the maximum positive value for a 32-bit signed binary
integer.

“value” (Optional) The prepopulated default value of the field. If none is
set, “value” will be the “min”.

The following is an example of the refresh interval field in the user interface:

“authorization” Field

The following is a sample configuration of an authorization field that can be defined
in the system.conf file. It uses a predefined parameter named “authorization”.

You can enable an interval-based authorization mechanism, which you can then use
in all action, polling, and resolve scripts.

For the Authorization Interval field, you specify the minimum and maximum number
of minutes for the interval at which the authorization is refreshed, and a default. In
this sample configuration, the minimum is one minute, the maximum is 100 minutes,
and the default is 28 minutes, which means the authorization is refreshed every 28
minutes.

It is recommended that you set the value of the field to less than the authorization
expiry. For example, if the authorization expires every 30 minutes, but you refresh
every 28 minutes, you can guarantee that you will always have a valid authorization.

You also need to specify the script used for authorization. See Authorization Script
for Connect. The script must be mapped in the property.conf file. See Map Scripts in
property.conf.

When authorization is defined in the system.conf file, the Refresh button on the
System Description dialog box is enabled to let you manually trigger a refresh. See
Refresh App Features.

Only one “authorization” field is allowed in a system.conf file.

The parameters of the authorization field are as follows:

Parameter Description

“authorization” (Required) When set to true, indicates an integer field for the authorization
refresh interval (in minutes).

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 30

Parameter Description

“display” (Required) The label of the field, which will be displayed on the left of the
field in the user interface.

“min” (Optional) The minimum value of the field. If none is set, “min” defaults to
1.

“max” (Optional) The maximum value of the field. If none is set, “max” will be
the maximum positive value for a 32-bit signed binary integer.

“value” (Optional) The prepopulated default value of the field. If none is set,
“value” will be the “min”.

The resulting field, Authorization Interval(in minutes), is displayed in the user
interface.

“rate limiter” Field

The following is a sample configuration of a rate limiter field that can be defined in
the system.conf file. It uses a predefined parameter named “rate limiter”.

You can rate limit the requests sent to the third-party server. The rate limiter
specifies the number of times a script is invoked during the specified time. It is
triggered when the app starts.

For the Number of API queries per unit time field, you specify the unit to use, such
as seconds, minutes, or hours, the minimum and maximum values, and a default. In
this sample configuration, the unit is one second, the minimum is one second, the
maximum is 1000 seconds, and the default is 100 seconds.

The script invocations are held as tasks in a queue. When the rate limiter constraint
is reached, there is a wait before the script is invoked again.

The tasks, up to the number specified in the value field, will be executed from the
pending queue per the specified time.

Only one “rate limiter” field is allowed in a system.conf file.

The parameters of the rate limiter field are as follows:

Parameter Description

“rate
limiter”

(Required) When set to true, indicates an integer field for the rate limiter.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 31

Parameter Description

“display” (Required) The label of the field, which will be displayed on the left of the
field in the user interface.

“unit” (Required) The unit for the rate limiter, which is an integer. For example, a
unit of 1 is 1 second, a unit of 60 is 1 minute, and a unit of 3600 is 1 hour.

“min” (Optional) The minimum value of the field. If none is set, “min” defaults to 1.

“max” (Optional) The maximum value of the field. If none is set, “max” will be the
maximum positive value for a 32-bit signed binary integer.

“add to
column”

When set to true, you can select the field from the Add/Remove Columns
dialog box.

“show
column”

When set to false, the field is not displayed as a column in the System
Description dialog box. When set to true, the field is displayed as a column
in the System Description dialog box if “add to column” is set to true.

“value” (Optional) The prepopulated default value of the field. If none is set, “value”
will be the “min”.

The resulting field, Number of API queries per unit time, is displayed in the user
interface.

“host discovery” Field

The following is a sample configuration of a host discovery checkbox and field that
can be defined in the system.conf file. It uses a predefined parameter named “host
discovery”.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 32

Only one “host discovery” field is allowed in a system.conf file.

The parameters of the host discovery field are as follows:

Parameter Description

“host
discovery”

(Required) When set to true, indicates a checkbox to enable and disable a
host discovery field as well as an integer field for the discovery frequency.

“display” (Required) The label of the field, which will be displayed on the left of the
field in the user interface.

“max” (Optional) The maximum value of the field. If none is set, “max” will be the
maximum positive value for a 32-bit signed binary integer.

“add to
column”

When set to true, you can select the field from the Add/Remove Columns
dialog box.

“show
column”

When set to false, the field is not displayed as a column in the System
Description dialog box. When set to true, the field is displayed as a column
in the System Description dialog box if “add to column” is set to true.

“value” (Optional) The prepopulated default value of the field. If none is set, “value”
defaults to 1. The unit is minutes.

The resulting fields are displayed in the user interface. To enable the Discovery
Frequency field, select the Enable Host Discovery checkbox.

You also need to specify the script used for host discovery. The script must be
mapped in the property.conf file. See Map Scripts in property.conf.

When discovery is defined in the system.conf file and the Enable Host Discovery
checkbox is selected, the Refresh button on the System Description dialog box is
enabled to let you manually trigger a refresh. See Refresh App Features.

Assign CounterACT Devices Panel Details

The “focal appliance” panel is required in the system.conf file. Host discovery,
property resolve, and actions are communicated via the focal appliance to the
endpoint.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 33

You cannot set "focal appliance" to false. If it is missing from the configuration, an
error message is displayed.

In general, it is not recommended to use the Enterprise Manager as the connecting
CounterACT device. But if you must, make sure that it is not used to discover MAC-
only hosts.

The “focal appliance” panel is predefined and results in the following panel, with
Assign all devices by default selected, so you can add one device.

More devices can be added after the first device. Subsequently, the Assign
CounterACT Devices panel has more fields. See Add a System Description for details
about the predefined fields on the panel.

Note the following:

 An error message is displayed if you try to add a device that is already used.

 Only one focal appliance panel is allowed in a system.conf file.

 The focal appliance panel cannot be the first panel defined in the system.conf
file.

 The focal appliance must be the managing appliance for overlapping IPs.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 34

Proxy Server Panel Details

The “proxy server” panel is predefined and results in the following panel.

Both authentication and non-authentication modes are supported. For example, a
proxy server username and password are not required.

Only one proxy server panel is allowed in a system.conf file.

See Add a System Description for details about the predefined fields on the panel.

The Proxy Server panel has predefined field IDs, which you might need to use in a
Python script. The field IDs for the Proxy Server panel are:

 Use Proxy Server: connect_proxy_enable

 Proxy Server: connect_proxy_ip

 Proxy Server Port: connect_proxy_port

 Proxy Server Username: connect_proxy_username

 Proxy Server Password: connect_proxy_password

 There is no field ID for the Verify Password field because the "encrypted" field
type includes the verify field.

To enable the proxy server functionality, you must include it in a script. You also
need to specify the script in the property.conf file. See Map Scripts in property.conf.

Summary of system.conf Rules
The following is a summary of the system.conf rules:

Rule For More Information

Use the same “name” in the system.conf and
property.conf files

Parameter Details for Name, Version,
Author, and Test Button

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 35

Rule For More Information

Define at least two panels with one field on each
panel

Define Panels and Fields

Define at least one field on the first panel with a
“mandatory” parameter set to “true”

“mandatory” Parameter

Only one “identifier” parameter is allowed Error Message for “identifier” Parameter in
User Interface

Only one “certification validation” field is allowed “certification validation” Field

Only one “app_instance_cache” field is allowed “app_instance_cache” Field

Only one “authorization” field is allowed “authorization” Field

Only one “rate limiter” field is allowed “rate limiter” Field

Only one “host discovery” field is allowed “host discovery” Field

Define at least one field with “add to column”
parameter set to true

“add to column” Parameter in User Interface

If the “type” is encrypted, it cannot be added as
a column

“add to column” Parameter in User Interface

Focal appliance panel is required
Only one focal appliance panel is allowed
Focal appliance panel cannot be the first panel

Assign CounterACT Devices Panel Details.

Only one proxy server panel is allowed Proxy Server Panel Details

Define property.conf File
The property configuration or property.conf file contains properties specific to the
integration you want to create. The property.conf file also defines actions and maps
scripts. Script mapping ties the properties and actions in the property.conf file to the
Python scripts. The property.conf file is in JSON format. You can use any text editor
to edit it, such as Notepad++.

You can also define policy templates and icons in the property.conf file.

The property configuration file must be named either property.conf or property.json.
It has the following sections:

 Define Name in property.conf

 Define Property Groups in property.conf

 Define Properties in property.conf

 Define Action Groups in property.conf

 Define Actions in property.conf

 Map Scripts in property.conf

 Define Policy Templates in Connect

 Define Policy Template Group in property.conf

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 36

 Define Policies in property.conf

 Define Icons in Connect

See Sample property.conf File.

Define Name in property.conf
Define the “name” field in the property.conf file, which is a required field.

Parameter Details for Name

The parameter for “name” is as follows:

Parameter Description

“name” (Required) The name of the app. Each app must have a unique name. The
name in the system.conf and property.conf files must match.
The name can contain letters (uppercase and lowercase), numbers, spaces,
and special characters, but not the underscore character (_).
Names are used in various places in configuration files and Python scripts.
Select a specific name rather than a generic name.

Define Property Groups in property.conf
Use “groups” to define property group names. The value of “groups” is a JSON array.
Each element of the JSON array is a JSON object.

In the following example, one group is defined, but there can be multiple.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 37

“groups” in User Interface

The “groups” parameter results in a label for the property group displayed in the
user interface in the Condition dialog box.

Parameter Details for Property Groups

The parameters for “groups” are as follows:

Parameter Description

“name” (Required) The internal, unique name of the group, in ASCII characters. It
must start with connect_<appname>_.
The <appname> must consist of all lowercase letters of the name defined in
the app without any spaces or underscores. For example, the <appname> for
VMware AirWatch would be vmwareairwatch.

“label” (Required) The label of the group displayed in the user interface.

Define Properties in property.conf
Use “properties” to define the properties that can be used as conditions in policies.
The value of “properties” is a JSON array. Each element of the JSON array is a JSON
object.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 38

In the following example, one property is defined. There can be multiple properties,
each with different parameters.

“properties” in User Interface

The “properties” parameter results in properties displayed in the user interface in the
Condition dialog box.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 39

Parameter Details for Properties

The parameters for “properties” are as follows:

Parameter Description

“tag” (Required) The internal, unique name of the property, in ASCII
characters. It must start with connect_<appname>_.
The <appname> must consist of all lowercase letters of the name
defined in the app without any spaces or underscores. For example,
the <appname> for VMware AirWatch would be vmwareairwatch.
If the properties are used in a script to resolve properties, the
property tags must be listed in the property.conf file under
“scripts”. See Parameter Details for Scripts.

“label” (Required) The label of the property displayed in the user interface.
See “label” in User Interface.

“description” (Required) The description of the property displayed in the user
interface. See “description” in User Interface.

“type” (Required) The type of the property. The valid types are string,
boolean, integer, date, and composite. See Property “type” Details.

“web_enable” (Optional) When set to true, this property can be updated through
the Connect web service. The default is false. To use the web
service API to update a property, set "web_enable" to true. See Use
the Connect Web Service for details.

“group” (Required) The group to which the property belongs. This must
match the name defined in “groups” or the name of an existing
property group in the Forescout platform. See Define Property
Groups in property.conf.

“options” (Optional) The options of a string property type. See “options” in
Property “type” Details.

“resolvable” (Optional) When set to true, the Forescout platform requests to
resolve the property through policy recheck. When set to false,
there is no request for rechecking the property; it is resolved
through periodic polling/host discovery. The default is true.

“require_host_access” (Optional) When set to true, resolving the host requires open TCP
or UDP ports on the host. When set to false, resolving the host
does not require open TCP or UDP ports on the host. The default is
false.

“inventory” (Optional) When set to true, add this field as a column in the
Inventory view. The default is false.
The value of “inventory” is a JSON object with the following fields:
 “enable”—(Required) When set to true, the Inventory view is

required to create the property
 “description”—(Required) The description of the Inventory

“asset_portal” (Optional) When set to true, the property is displayed in the asset
profile. When set to false, the property is not displayed in the asset
profile. The default is true.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 40

Parameter Description

“track_change” (Optional) Indicates if another property needs to be created in the
Track Change group, which can be used as a policy condition that
identifies changes in the property value.
The value of “track_change” is a JSON object with the following
fields:
 “enable”—(Required) When set to true, add track change to the

property
 “label”—(Required) The label of the track change property in

the user interface
 “description”—(Required) The description of the track change

property

“dependencies” (Optional) Indicates if resolving this property requires values of
other properties. Use “dependencies” to add a dependent field to a
property. When resolving this property, the value of the dependent
property is sent to the Python script.
The value of “dependencies” is a JSON array. Each element of the
JSON array is a JSON object with the following fields:
 “name”—(Required) The tag name of the dependent property in

the Forescout platform. For example, a MAC address could be a
dependency that is used in a Python script to resolve a
property.

 “redo_new”—(Optional) When set to true, the property needs
to be resolved again when the dependent property has a value
for the first time. The default is false.

 “redo_change”—(Optional) When set to true, the property
needs to be resolved again when the value of the dependent
property changes. The default is false.

“list” (Optional) When set to true, the property is a list. When set to
false, the property is a single string, integer, boolean, or date. The
default is false.

“overwrite” (Optional) When set to true, the property is a simple list and the
old property values are replaced by new resolved values every
time, if “list is also set to true.
When set to false, the property is a list and the new resolved values
are appended to the old values every time. The default is false.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 41

“label” in User Interface

The “label” of a property is displayed in the Condition dialog box in the user
interface.

“description” in User Interface

The “description” of a property is displayed in the Condition dialog box in the user
interface.

Property “type” Details

The property “type” parameters are as follows:

Type Sub-Type Description

“string” A string type of property.

 “options” A sub-type of the string property. Use “options” to define
multiple options so that a user can select a value instead of
typing it.
The value of “options” is a JSON array. Each element of the
JSON array is a JSON object with the following fields:

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 42

Type Sub-Type Description
 “name”—(Required) The value of the option used to

resolve the property
 “label”—(Required) The label in the user interface
See “options” Details.

“boolean” A Boolean type of property.

“integer” An integer type of property.

“date” A date type of property.

See “date” Details.

“composite” “subfields” A type of property that has multiple fields.
The value of “subfields” is a JSON array. Each element of the
JSON array is a JSON object with the following fields:
 “tag”—(Required) The tag of the field, which is a text

string, in ASCII characters. It must be unique only within
the property.

 “label”—(Required) The label in the user interface.
 “description”—(Required) The description in the user

interface.
 “type”—(Required) The type of the subfield. The valid

types are string, integer, boolean, and date.
 “inventory”—(Optional) When set to true, add this field as

a column in the Inventory view. If this subfield needs an
Inventory column, “inventory” must be enabled in this
property first. The default is false.

See “composite” Details.

 “options” Details

The following sample “options” definition produces the user interface on the right in
the Condition dialog box.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 43

“date” Details

When populating the "date" property type, use epoch time.

The following two examples use the datetime library in Python scripts:

Example 1:
prop_val = "2021-02-17T09:40:30Z"

prop_val = int(datetime.strptime(prop_val, '%Y-%m-
%dT%H:%M:%SZ').strftime('%s'))

Example 2:
time_str = "02/17/2021 10:00:00"

epoch = int(datetime.strptime(time_str, '%m/%d/%Y %H:%M:%S').timestamp())

“composite” Details

The following sample “composite” definition produces the user interface on the right
in the Condition dialog box.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 44

To add the property to the Inventory view, enable inventory on the property as well
as on the subfields of a composite property:

Composite subfields cannot be added as dependencies. However, you can access the
subfields if you add the parent composite property as a dependency.

Properties in Policy Templates

Properties in policy templates are selected from the Condition dialog box.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 45

Properties can be used in a rule.

See Configure Policy Templates in Connect for the policy template procedure.

Define Action Groups in property.conf
Use “action_groups” to define action group names. The value of “action_groups” is a
JSON array. Each element of the JSON array is a JSON object.

In the following example, one action group is defined, but there can be multiple.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 46

“action_groups” in User Interface

The “action_groups” parameter results in a label for the action group displayed in the
user interface menu when you right-click an endpoint in the All Hosts pane.

The “action_groups” parameter is also displayed in the user interface menu for
Actions in the Action dialog box.

Parameter Details for Action Groups

The parameters for “action_groups” are as follows:

Parameter Description

“name” (Required) The internal, unique name of the action group, in ASCII
characters. It must start with connect_<appname>_.
The <appname> must consist of all lowercase letters of the name defined in
the app without any spaces or underscores. For example, the <appname> for
VMware AirWatch would be vmwareairwatch.

“label” (Required) The label of the action group displayed in the user interface.

Define Actions in property.conf
You can define actions that make API calls to the third-party vendor. Actions can be
scheduled in policies.

One-time actions are supported, such as locking a device. With one-time actions,
once the action is done, it is done. There is no need to cancel the action.

Continuous actions are also supported, such as sending data to a third-party server
from an endpoint. Continuous actions maintain a state. To stop a continuous action,
you need to cancel the action. A continuous action can be cancelled either manually
or if the policy no longer applies.

Use “actions” to define actions. The value of “actions” is a JSON array. Each element
of the JSON array is a JSON object.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 47

In the following example, one action is defined, but there can be multiple.

“actions” in User Interface

The “actions” parameter results in a label for the action displayed in the user
interface menu item when you right-click an endpoint in the All Hosts pane.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 48

The “actions” parameter is also displayed in the user interface menu for Actions in
the Action dialog box.

Parameter Details for Actions

The parameters for “actions” are as follows:

Parameter Description

“name” (Required) The internal, unique name of the action, in ASCII
characters. It must start with connect_<appname>_.
The <appname> must consist of all lowercase letters of the name
defined in the app without any spaces or underscores. For
example, the <appname> for VMware AirWatch would be
vmwareairwatch.
If the actions are used in a script to execute actions, the action
names must be listed in the property.conf file under “scripts”. See
Parameter Details for Scripts.

“label” (Required) The label of the action displayed in the user interface.

“description” (Required) The description of the action.

“group” (Required) The group to which the action belongs. This must
match a name defined for “action_groups” or the name of an
existing action group in the Forescout platform.

“ip_required” (Optional) When set to true, the action cannot be taken when the
IP address is missing on the host. The default is false.

“threshold_percentage” (Optional) The threshold control on the action as a percentage. If
the number of action requests reaches the threshold, the
remaining actions are held while waiting for approval.

“params” (Optional) The parameters that a user must enter when taking the
action. See “params” Parameter Details and “params” in User
Interface.

“dependencies” (Optional) Indicates if this action requires dependent fields. Use
“dependencies” to add a dependent field to the action. The value
of the dependent properties is sent to the Python script.
The value of “dependencies” is a JSON array. Each element of the
JSON array is a JSON object with the following fields:
 “name”—(Required) The tag name of the dependent property,

in the Forescout platform.
 “redo_new”—(Optional) When set to true, the property needs

to be resolved again when the dependent property has a value
for the first time. The default is false.

 “redo_change”—(Optional) When set to true, the property
needs to be resolved again when the value of the dependent
property changes. The default is false.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 49

Parameter Description

“undo” (Optional) Indicates if the action can be canceled (for a continuous
action). Use “undo” to define a cancel action.
The value of “undo” is a JSON object with the following fields:
 “label”—(Required) The label of the cancel action in the user

interface
 “description”—(Required) The description of the cancel action
See “undo” in User Interface.

 “params” Parameter Details

The “params” parameters are as follows:

Parameter Description

“name” (Required) The unique name of the parameter, in ASCII characters.

“label” (Required) The label of the parameter displayed in the user interface.

“description” (Required) The description of the parameter.

“type” (Required) The type of the parameter. The valid types are string, integer,
and boolean.

“default” (Optional) The default value of the action parameter. It is displayed when
you add a new action. The only valid type is string.

“multiline” (Optional) When set to true, the action parameter is a string type that
needs multiple lines of text. The default is false.

“min” (Optional) The minimum value that users can enter in the user interface
for the parameter, when the type is integer.

“max” (Optional) The maximum value that users can enter in the user interface
for the parameter, when the type is integer.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 50

“params” in User Interface

When you select an action with “params”, the user is prompted for information in the
user interface.

“undo” in User Interface

The “undo” parameter results in a label for the cancel action displayed in the user
interface menu item when you right-click an endpoint in the All Hosts pane.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 51

Actions in Policy Templates

Actions in policy templates are selected from the Action dialog box.

Actions can be used in a rule.

See Configure Policy Templates in Connect for the policy template procedure.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 52

Map Scripts in property.conf
Use “scripts” to provide the name of the script to call as well as its usage. Script
mapping ties the properties and actions in the property.conf file to the Python
scripts.

Each app must have at least one Python script in it. See Write Python Scripts for
Connect.

The value of “scripts” is a JSON array. Each element of the JSON array is a JSON
object.

Parameter Details for Scripts

The parameters for “scripts” are as follows:

Parameter Description

“name” (Required) The name of the script. You can name a script using the
third-party vendor and what the script does, for example,
cylance_poll.py.
Since the scripts must be added to the top level of the .zip or
data.zip file, there is no need to provide a path to them.

“properties” When properties are listed, the script resolves properties. This
parameter is required if the script resolves properties. The value is
a JSON array of property tags. See “tag” in Parameter Details for
Properties.

“actions” When actions are listed, the script executes actions. This parameter
is required if the script executes actions. The value is a JSON array
of action names. See “name” in Parameter Details for Actions.

“is_cancel” When set to true, the script cancels the action. This parameter is
required if the script cancels an action. The value is a JSON array of
action names. See “name” and “undo” in Parameter Details for
Actions and see also Action Script for Connect.

“test” When set to true, the script runs the test when the Test button in
the user interface is selected. See “testEnable” in Parameter Details
for Name, Version, Author, and Test Button and Test Script for
Connect.

“discovery” When set to true, the script discovers hosts from a third-party.

“authorization” When set to true, the script gets authorizations.

“app_instance_cache” When set to true, the script gets app instance cache data.

“library_file” When set to true, you can put your own Python files to serve as
library files within an app. See Library Files.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 53

“scripts” Details

The following sample “scripts” in the property.conf file shows the mapping of seven
different scripts.

Define Policy Templates in Connect
If you need policy templates for your app, read Create Policy Template XML File for
Connect to gain an understanding of the steps before returning to this section.

If you do not have a need for policy templates, you can skip this section.

Use “policy_template” to define policy templates.

The value of “policy_template” is a JSON object with the following fields:

Parameter Description

“policy_template_group” (Required) The policy template group in the app. See Define
Policy Template Group in property.conf.

“policies” (Required) The policy templates in the app. See Define Policies in
property.conf.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 54

Define Policy Template Group in property.conf
Use “policy_template_group” to define the policy template group. The value of
“policy_template_group” is a JSON object.

Only one policy template group can be defined.

“policy_template_group” in User Interface

The “policy_template_group” parameter results in a label for the policy template
group displayed in the user interface.

Parameter Details for Policy Template Group

The parameters for policy template group are as follows:

Parameter Description

“name” (Required) The internal, unique name of the policy template group, in
ASCII characters. It must be named connect_<appname>.
The <appname> must consist of all lowercase letters of the name
defined in the app without any spaces or underscores. For example, the
<appname> for VMware AirWatch would be vmwareairwatch.

“label” (Required) The label of the policy template group displayed in the user
interface.

“display” (Required) The heading of the policy template group displayed in the
user interface.

“description” (Optional) The description of the policy template group displayed in the
user interface.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 55

Parameter Description

“full_description” (Optional) The full description of the policy template group displayed in
the user interface. HTML formatting can be used in the full description,
for example, to create a bulleted list.

“title_image” (Optional) The icon image for the policy template group. See Define
Icons in Connect.

Define Policies in property.conf
You can customize a third-party vendor integration by defining policy templates.

Use “policies” to define the policy templates. The value of “policies” is a JSON object.

In the following example, one policy template is defined, but there can be multiple.

“policies” in User Interface

The “policies” parameter results in policy templates in the user interface.

Parameter Details for Policy Templates

The parameters for policy templates are as follows:

Parameter Description

“name” (Required) The internal, unique name of the policy template, in ASCII
characters. It must start with connect_<appname>_.
The <appname> must consist of all lowercase letters of the name
defined in the app without any spaces or underscores. For example, the
<appname> for VMware AirWatch would be vmwareairwatch.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 56

Parameter Description

“label” (Required) The label of the policy template displayed in the user
interface.

“display” (Required) The heading of the policy template displayed in the user
interface.

“description” (Optional) The description of the policy template displayed in the user
interface.

“help” (Optional) The help information of the policy template, which is
displayed when you hover the mouse over the Help button in the user
interface.

“file_name” (Required) The name of the .xml file containing the policy template. The
.xml file must be saved in the app in the following path:
policies/nptemplates

See App Folder Paths.

“full_description” (Optional) The full description of the policy template displayed in the
user interface. HTML formatting can be used in the full description, for
example, to create a bulleted list.

“title_image” (Optional) The icon image for the policy template. See Define Icons in
Connect.

Define Icons in Connect
You can customize an app by adding icons to help identify a third-party integration
visually. You can add icons for actions, action groups, property groups, and policy
templates. The only valid format for icons is .png.

You must put the icons in specific folders in the zip file of the app. See App Folder
Paths.

The image names for policy templates must be specified in the property.conf file, for
example:
“title_image”: cylance.png

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 57

For policy template icons, the folder name and the image name (the .png file) must
be the same as the name defined in the property.conf file for
“policy_template_group”. To display the policy template group icon in the user
interface, use the following naming convention for the icon in the zip file:
<appname>/images/np_ng/templatedirs/connect_<appname>/connect_<appname>.png

For example, in the folder, cylance/images/np_ng/templatedirs/connect_cylance, the
image must be named, connect_cylance.png.

For other policy template icons, put them in the folder:
<appname>/images/np_ng/templatedirs/connect_<appname>

For action icons, if the action name is connect_cylance_add_user, then all icons
regarding this action should be put in the following folder:
<appname>/images/np_ng/actions/connect_cylance_add_user

For action icons, the icon names have a specific format. For example, if the action
icon is named connect_cylance_add_user.png, the icon for the corresponding failed
action must have the same name but be prefixed with failed_. Similarly, use the
prefixes gray_ and waiting_ for those action states.

For action group icons, each group defined in the property.conf file must have a
folder in the action_groups folder. The folder name and image name should be the
same as the name defined in the property.conf file for “action_groups”.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 58

For property group icons, each group defined in the property.conf file must have a
folder under the field_groups folder. The folder name and image name must be the
same as the name defined in the property.conf file for “groups”.

An icon has specific dimensions. They must be 16 x 16 pixels.

Create Policy Template XML File for Connect
A policy template file, in .xml format, needs to be created before you can complete
the policy template definition in the property.conf file.

If you have three different policy templates, you will need three policy .xml files. See
Sample Policy Template .xml File for Connect for a sample of an .xml file. The .xml
files are added to the zip folder of the app.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 59

To create policy templates:

1. Define the properties and actions in the property.conf file that will be needed
by your policies.

2. Import the app containing those properties and actions into Connect.

3. In the Forescout Console, go to Policy.

4. Create a custom policy template by selecting Custom and then:

a. Select Add.
b. Name the policy template based on your app name and select Next.
c. Select All IPs for the IP Address Range. (Even if you add a segment, it is

not saved.) Select Next.
d. In the Main Rule pane, select properties and actions, and then select

Next.
e. (Optional) In the Sub-Rules pane, select properties and actions, and then

select Next.
f. Select Finish.

5. When the custom policy template is created, it is displayed in the Policy
Manager. Select it and then select Export. Select the .xml file format.

6. Once you have the .xml file, put it in the app under the policies/nptemplates
folder. See App Folder Paths.

7. (Optional) Add an icon for the policy template group and policy template. See
Define Icons in Connect.

8. Return to the property.conf file to define the policy template. See Define
Policy Templates in Connect.

9. Import the app into Connect and select Apply.

Write Python Scripts for Connect
You can write scripts to accomplish tasks with Connect such as resolve properties,
take actions, or poll for endpoints. Scripts communicate with the third-party vendor.

Name a script by prepending the name of the third-party vendor to what the script
does. For example, if the app name is cylance and there is a polling script, poll.py,
the script must be named cylance_poll.py.

The name of the script must be included in the property.conf file. See Map Scripts in
property.conf.

Examples of the scripts that can be written are:

 Testing. See Test Script for Connect.

 Polling/host discovery. See Polling Script for Connect.

 Actions. See Action Script for Connect.

 Property resolve. See Property Resolve Script for Connect.

 Authorization. See Authorization Script for Connect and Token-Based
Authorization.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 60

Examples of using predefined fields in scripts are:

 App instance cache. See Use App Instance Cache in Connect Scripts.

 Validate Certification. See Use Certificate Validation in Connect Scripts.

An app must have at least one script in it. For sample scripts, see Sample Connect
Script Files.

About Python Scripting for Connect
See the following sections for information about Python scripting:

 Libraries

 Python Debug Levels

 Python Log Location

 Script Not Found

Libraries

The Python version that is installed with Connect is 3.6.3. It has built-in libraries that
you can import. Due to security implications, do not import other libraries.

The following link contains the standard built-in libraries that can be imported into
scripts:

https://docs.python.org/3.6/library/

The list of third-party libraries that are installed and ready to use are:

 cryptography

 httpsig

 prometheus_client

 pyjwt (imported as jwt)

 requests

The list of built-in libraries that are not permitted are:

 _dummy_thread

 _thread

 cmd

 ctypes

 dnspython

 dns

 dummy_threading

 eval

 exec

 fcntl

 glob

https://docs.python.org/3.6/library/

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 61

 io

 multiprocessing

 open

 os

 pathlib

 shutil

 subprocess

 sys

 threading

 trace

 traceback

 tracemalloc

The list of built-in functions that are not permitted are:

 eval

 exec

 open

You cannot import an app into the Forescout Console if it contains a script that uses
an unsupported library.

Note the following:

 Calling one Python script from another Python script is not supported.

 Every script has a response object.

 All scripts are run with non-root permissions.

Library Files

You can put your own Python files to serve as library files within an app. Other
scripts can use the methods and/or objects in these files.

In the property.conf file, under “scripts”, you must name the file and set
"library_file" to be true. See Map Scripts in property.conf.

Scripts that use library files defined in the property.conf file must not include the
import statement that refers to these library files because they have already been
dynamically loaded when the app was imported.

Python Debug Levels

The Python debug levels match the five debug levels set in the Forescout platform
using the fstool command. The five debug levels are: critical, error, warning, info,
and debug, which have values 1 to 5 respectively.

For example:
fstool connect_module debug 5

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 62

A level higher than five will default to five. Any change to the log levels takes a few
minutes to propagate.

Log level settings apply to all Connect apps.

Python Log Location

The Python server logs are located in the following path:
/usr/local/forescout/plugin/connect_module/python_logs

Script Not Found

The Python scripts included in the "scripts" section of the property.conf file must be
present in the app. If a script is not found, there will be an exception in the Python
server log.

Test Script for Connect
For the Test button in the System Description dialog box, you can write what you
want to test in a script. The script can leverage input parameters from the user
interface, such as a URL.

To create a test script:

1. Write the test script and put it in the top level of the zip file of the app.

2. Specify the test script name in the property.conf file. See Map Scripts in
property.conf.

3. Specify "testEnable":true in the system.conf file.

The app must be saved before selecting Test in the user interface. Select OK in the
System Description dialog box and then select Apply in the Connect pane to save
the system description configuration.

For example, the Cylance testing script displays success when it gets the JSON
authorization token. Test scripts for other apps may have different criteria for
success or failure.

See Sample Test Script for Connect.

Response Objects

The response objects for test scripts are as follows.

Mandatory Fields

"succeeded": boolean to denote if the test succeeded

"result_msg" (only mandatory if "succeeded" is false) : string message to
display test results

Optional Fields

"result_msg" (optional for if succeeded is True)

Examples

response = {"succeeded" : True}

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 63

response = {"succeeded" : False, "result_msg" : "Test failed due to
connection error."}

Polling Script for Connect
You can write a script in which an app polls a third-party integration to get regular
updates, such as for host discovery. The poll can take place at a scheduled
frequency.

The polling script needs to include a JSON array of endpoints.

The properties object for polling scripts can have scalar, list, composite, or list of
composite properties.

See Sample Polling Script for Connect.

Response Objects

The response objects for polling/discovery scripts are as follows.

Mandatory Fields

"endpoints": a list that will contain information about new endpoints

"error" : Error message if polling script fails for a known reason

Mandatory Sub-Fields for Endpoints

"mac" and/or "ip": Must contain MAC and/or IP address as a string

Optional Sub-Fields for Endpoints

"properties": a map/dictionary that contains host properties; the key will
be the property name and the value will be the property value

Examples

response =

{"endpoints":

 [

 {"mac": "001122334455",

 "properties":

 {"property1": "property_value", "property2": "property_value2"}

 },

 {"ip": "10.1.1.1",

 "properties":

 {"property1": "property_value"}

 },

 {"mac": "112233445566",

 "ip": "10.2.2.2",

 "properties":

 {"property1": "property_value"}

 }

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 64

]

}

Action Script for Connect
You can write action scripts for both one-time actions and continuous actions.

If actions are used in a script, the action names must be listed in the property.conf
file under “scripts”.

For a continuous action, such as adding a user, a cookie object persists over the
action request. If the continuous action is to add a user, then the corresponding
cancel action is to delete a user. The cookie object stores the string.

To define the scripts related to a continuous action, map the script name to the
continuous action, then map the cancel script name to the cancel continuous action
and specify “is_cancel”: true.

See Sample Add a User Action Script for Connect and Sample Delete a User Action
Script for Connect.

In an action script, you can use the properties object response field to update
property values, whether the action succeeded or failed. See Sample Add a User
Action Script for Connect.

Response Objects

The response objects for action scripts are as follows.

Mandatory Fields

"succeeded": boolean to denote if the action succeeded

"troubleshooting" (only mandatory if "succeeded" is false) : string message
to display error message if action failed

Optional Field for Cookie

"cookie": Optional field for continuous actions to store information that
can be used later in the undo script.

Optional Field for Properties

"properties": a map/dictionary that contains host properties; the key will
be the property name and the value will be the property value.

Examples for Cookie

response = {"succeeded" : True}

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 65

response = {"succeeded" : True, "cookie" : 13452829256}

response = {"succeeded" : False, "troubleshooting" : "Action failed.
Response code: 402."}

Examples for Properties

response = {“succeeded” : True,

“properties”:

 "property1": "property_value1",

 "property2": ["value1", "value2", "value3"]

 "property3":

 {

 "property3_subfield1": "value1",

 "property3_subfield2": "value2"

 }

 "property4": [

 {

 "property4_subfield1": "value1",

 "property4_subfield2": "value2"

 },

 {

 "property5_subfield1": "value1",

 "property5_subfield2": "value2"

 }

]

}

Property Resolve Script for Connect
You can write a script that handles host property resolve requests.

If properties are used in a script, the property tags must be listed in the
property.conf file under “scripts”.

It is recommended that the property resolve script contain a mapping of the API
response fields to the Forescout platform properties, for example:
cylance_to_ct_props_map = {

 "state": "connect_cylance_state",

The property resolve script can also have dependencies defined in the property.conf
file. For example, if a MAC address is needed to resolve a property, you can define a
dependency on the Forescout platform’s MAC address property.

If a property is not resolved after the Python script is called, the property will be set
to irresolvable.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 66

The properties object for property resolve scripts can have scalar, list, composite, or
list of composite properties.

See Sample Resolve Script for Connect.

Response Objects

The response objects for property resolve scripts are as follows.

Mandatory Fields

"properties": a map/dictionary that contains host properties; the key will
be the property name and the value will be the property value.

"error": Error message if script fails for a known reason

Examples

response = {"error" : "Script failed due to server failure."}

response =

{"properties":

 "property1": "property_value1",

 "property2": ["value1", "value2", "value3"]

 "property3":

 {

 "property3_subfield1": "value1",

 "property3_subfield2": "value2"

 }

 "property4": [

 {

 "property4_subfield1": "value1",

 "property4_subfield2": "value2"

 },

 {

 "property5_subfield1": "value1",

 "property5_subfield2": "value2"

 }

]

}

Authorization Script for Connect
You can write a script to get one authorization per configuration. Authorizations are
stored globally. You can retrieve the authorization from the configuration parameter
“connect_authorization_token” whenever you want to use it in scripts. For example:
jwt_token = params["connect_authorization_token"]

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 67

An authorization script can leverage input parameters from the user interface, such
as a URL.

See Sample Authorization Script for Connect.

Response Objects

The response objects for authorization scripts are as follows.

Mandatory Fields

"token": a string of authorization token. If the authorization is failed,
put an empty string "" here.

Token-Based Authorization

There are two approaches to using token-based authorization in scripts.

One approach is to use the authorization feature provided by Connect, which gets
the authorization token from the “connect_authorization_token” field whenever you
want to use it in scripts. See Authorization Script for Connect.

For a test script, you can check if the token is empty or not. If it is empty, the
connection has failed. The sample test script uses this approach. See Sample Test
Script for Connect.

The second approach is to get authorization each time a script is called. See the
comments in the other sample scripts, for example, see Sample Polling Script for
Connect.

Use App Instance Cache in Connect Scripts
You can write a script to get non-endpoint data at the per configuration instance of
the app. The data is stored as a system description field and is available for that app.

You can retrieve the data from the configuration parameter
"connect_app_instance_cache" whenever you want to use it in scripts.

In the script, the field for the response object is "connect_app_instance_cache". Put
the value to be saved in this field. If there is any error, put "error" in the response
object. For an example, see Sample App Instance Cache Script for Connect.

To use this field value in other scripts, use
params.get(“connect_app_instance_cache”). For an example, see Sample Add a User
Action Script for Connect.

Use Certificate Validation in Connect Scripts
If you have defined a checkbox for Validate Server Certificate in the system.conf file,
you need to use a built-in SSL object in your Python script.

When using urllib, use the keyword “ssl_context” in the HTTP request. For example:
response = urllib.request.urlopen(request, context=ssl_context)

For other examples of “ssl_context”, see Sample Connect Script Files.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 68

When using the requests library, use the keyword “ssl_verify” in the HTTPS request.
For example:
response = requests.get('https://github.com', verify=ssl_verify)

To use the certificate validation feature, upload the entire certificate chain to the
Forescout platform.

 Certificate validation works with certificates with a Certificate Revocation List
(CRL). If the certificates have been uploaded to the Forescout platform, they
do not have to be signed by a Certificate Authority (CA).

Use the Connect Web Service
The Connect web service APIs provide an interface to access eyeExtend Connect
functions. Using the Connect RESTful APIs, a third-party vendor can get or update
host information. You can query and update the properties defined in a Connect app
through Connect RESTful APIs in a script or through Swagger or curl commands.

To use the Connect web service to invoke an API:

1. Enable the web service in the system.conf file for the app. See Define Name,
Version, and Author in system.conf.

2. Enable the property values that you want to update through the APIs in the
property.conf file for the app. See Define Properties in property.conf.

3. Configure the username and password in the Connect Plugin in the
Authentication dialog box. See Configure Authentication for Connect Web
Service.

4. Obtain a JWT token. The RESTful API uses the username, password, and app
name to validate the app. The obtained token can only be used by this app.
The JWT token, with the Bearer token format, is then used for subsequent API
requests to authenticate with the Connect Plugin.

5. Call RESTful APIs to get or update host information.

You can use Swagger to obtain a JWT token and then use the Authorize button in
Swagger to include the JWT token with the Bearer token format. See Access
Swagger User Interface, Obtain JWT Token from Swagger, and Set Authorization in
Swagger.

You can also use curl or POSTMAN to call the APIs, but then you will need to put the
JWT token with the Bearer token format in the API request Authorization header. See
Curl Examples.

Access Swagger User Interface

Swagger (OpenAPI) documents the Connect web API and lets you run the RESTful
APIs by using the Try it out button. You can browse Swagger to look at the available
APIs, their parameters, response definitions, and data model, as well as to learn how
the APIs work with request and response. Swagger provides a user-friendly interface
to invoke APIs.

You do not need to authenticate to access the Connect web service Swagger user
interface (UI), however, you will need to authorize to run any API via Swagger.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 69

To view a static version of the Swagger UI, see Appendix B: Swagger User Interface.

To access the live version of Swagger, in a supported browser, substitute the
hostname or IP address of your Enterprise Manager (EM) in the following URL:

https://<EM hostname or IP address>/connect/swagger-ui/index.html#/

Swagger is supported in the latest versions of Chrome, Safari, Firefox, and Edge
available at the time of this release.

About the Connect APIs

The following Connect APIs are available:

 POST /connect/v1/authentication/token: Use this API to get a JWT token to
authenticate API requests. The required parameters are username, password,
and app_name. The following is a sample:
{

 "username":"username",

 "password":"password",

 "app_name":"cylance",

 "expiration":"15"

}

 GET /connect/v1: Use this API to test the connection to Connect. There are no
parameters.

 GET /connect/v1/hosts/{id}: Use this API to get properties for a single host.
To GET host properties, the endpoint called must be the EM or managing
appliance. The required parameters are IP address or MAC address. Properties
are optional. If no properties are specified, all the properties in the app are
returned. An example of a single property is: connect_cylance_is_safe. An
example of multiple properties is: connect_cylance_is_safe,
connect_cylance_last_logged_in_user (use a comma separated list).

 POST /connect/v1/hosts/: Use this API to update one or more properties for a
host. Each of the properties to be updated must have “web_enable” set to
true. The required parameters are an IP or MAC address as well as the
properties to be updated. The parameters must be in the body of the POST
request. For this release, only one host update per request is supported. If
both the IP and MAC addresses are provided in the body, the MAC address
takes precedence over the IP address. If the IP address is different from the
existing IP address, the IP address of the host is updated to the IP address
provided in the request body. The following is a sample request body:
{

 "mac":"009027390a7c",

 "properties":{

 "connect_cylance_is_safe":false,

 "connect_cylance_last_logged_in_user":"admin"

 }

}

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 70

You can try out the APIs in Swagger, you can use the Try it out button. You will
need to set up the Authentication in Swagger before calling the APIs. See Obtain JWT
Token from Swagger and then Set Authorization in Swagger.

After setting up authentication in Swagger, you can edit the required fields in the API
request and then select Execute.

You can view the response codes and values in Swagger. See API Response Table for
a response code reference.

API Details

The following are some details for the APIs:

 HTTPS is required for requests.

 All API requests need authentication:

− To obtain the JWT token, the username and password are used in the
request.

− For subsequent API requests, the JWT token in Bearer format is used in
the request.

 The bearer token format is the word Bearer, followed by a single space and
the JWT token.

 The context type accepted in the request and response body is
application/json.

 The response structure is always in JSON format.

 The JWT token default expiration is 15 minutes. The range is from 1 minute to
1440 minutes. A shorter expiration period makes a token more secure.

Obtain JWT Token from Swagger

Use Swagger to obtain a JWT token.

To obtain a JWT token from Swagger:

1. Go to Swagger, substituting the hostname or IP address of your Enterprise
Manager in the following URL:
https:// <EM hostname or IP address>/connect/swagger-ui/index.html#/

2. Expand the JWT Token section.

3. Select POST and then select Try it out.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 71

4. In the sample body in JSON format, enter the required values from your
Connect app for username, password, and app_name. You can enter a value
for expiration, but it is optional. The default expiration is 15 minutes, the
maximum is 1440 minutes.

5. After entering your values, select Execute.

6. Scroll to the Successful response (Code 200).

7. Copy the JWT token, without the quotation marks.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 72

Set Authorization in Swagger

Use Swagger to set authorization to run other APIs.

To set authorization in Swagger:

1. Scroll to the Authorize button and select it.

2. Type the word Bearer, a single space, and then paste the JWT token into the
Value field.

3. Select Authorize.

4. Select Close.

With authorization set, you can now run other APIs in Swagger. For example, go to
GET /connect/v1, select Try it out, and then select Execute and view the response.

Curl Examples

The following is a curl example to get the JWT token. Substitute your EM hostname
or IP address for <EM hostname or IP>.
curl -X POST "https://<EM hostname or IP>/connect/v1/authentication/token"
-H "accept: application/json" -H "Content-Type: application/json" -d
"{\"username\":\"username\", \"password\":\"password\",
\"app_name\":\"cylance\", \"expiration\":\"15\"}"

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 73

The following is a curl example to use the JWT token in a request:
curl -X GET "https://ca-s9-em1/connect/v1" -H "accept: application/json" -k
-H "Authorization: Bearer
eyJhbGciOiJIUzUxMiJ9.eyJhcHBfbmFtZSI6ImN5bGFuY2UiLCJzdWIiOiJjaGFybGllIiwiaW
F0IjoxNjEzNzcxNDg3LCJleHAiOjE2MTM3NzIzODcsInJvbCI6WyJST0xFX1VTRVIiXX0.aXmhX
Y4B_lV5RSDhUphuOcH6Y8QSsxB47FCWwDNXo-SVh2ssK8nVBTqE-
5UpziFyYFuagpu8KLpZlOSP4fLYKQ"
{"status":"OK","code":200,"message":null,"data":"Connect"}

API Response Structure

API responses are always in JSON format.

Successful Response

A successful response has the following structure:

 “status”: The HTTP status, in string, such as OK.

 “code”: The HTTP status code, in integer.

 “message”: A message if there is any, in string. Otherwise, null.

 “data”: The data returned, in JSON format.

The following is an example of a successful response:
{

 "status": "OK",

 "code": 200,

 "message": null,

 "data": {

 "token":
"eyJhbGciOiJIUzUxMiJ9.eyJhcHBfbmFtZSI6ImN5bGFuY2UiLCJzdWIiOiJjaGFybGllIiwia
WF0IjoxNjEwMTU2Nzg0LCJleHAiOjE2MTAxNTc2ODQsInJvbCI6WyJST0xFX1VTRVIiXX0.BufP
f-gtgVT8zWMxUqnQ-BxdKWm2HUDv8dEnukIojqqd_G0voscweZ48Wod4PN17H3et-eZ5oX2-
NJ6aU5GyFw",

 "app_name": "cylance",

 "expire_time": 1610157684367

 }

}

Failed Response

A failed response has the following structure, which is similar to the successful
response, but there is no data parameter:

 “status”: The HTTP status, in string, such as UNAUTHORIZED, or other error.

 “code”: The HTTP status code, in integer.

 “message”: An error message if there is any, in string. Otherwise, null.

The following is an example of a failed response:
{

 "status": "UNAUTHORIZED",

https://ca-s9-em1/connect/v1%22

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 74

 "code": 401,

 "message": "Bad credentials"

}

See API Response Table for a response code reference.

API Response Table

The following table lists API response error messages.

Condition Status Code Message Data

GET
https://EM_IP/connect/v1

Succeed OK 200 null

Missing
Authorization
header

UNAUTHORIZED 401 Cannot find
authorization header
info.

Not using
Bearer token

UNAUTHORIZED 401 JWT token does not
begin with Bearer
format.

Invalid token
format

UNAUTHORIZED 401 Request to parse
invalid JWT token
failed: <exception
message>

Expired
token

UNAUTHORIZED 401 Request to parse
expired JWT token
failed: <exception
message>

Invalid token
signature

UNAUTHORIZED 401 Request to parse
JWT token with
invalid signature:
<token> failed:
<exception
message>

unsupported
token format

UNAUTHORIZED 401 Request to parse
unsupported JWT
token failed:
<exception
message>

Server failed
to respond

INTERNAL_
SERVER_ERROR

500 Message varies
depending on the
failure.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 75

Condition Status Code Message Data

POST
https://EM_IP/connect/v1/token

Succeed OK 200 null {"token":"eyJhbGciO
iJIUzUxMiJ9.eyJhcHB
fbmFtZSI6ImN5bGFu
Y2UiLCJzdWIiOiJhZG
1pbiIsImlhdCI6MTYw
NTgwNDk1MywiZXh
wIjoxNjA1ODA4NTUz
LCJyb2wiOlsiUk9MRV
9VU0VSIl19.1C-
pxOhlZaHhuvSeqKEF
jD9x-
M_cBhGAxiH8j_LF2Q
Sq4bBUEjlqcinWMlG
3SOvplz41anXbhYkF
sNY5IYV6Jg","app_n
ame":"cylance","expi
re_time":160580855
3963}

Using Get BAD_REQUEST 400 Use POST instead of
GET.

Missing
'username' in
body

BAD_REQUEST 400 Username is missing.

Missing
'password' in
body

BAD_REQUEST 400 Password is missing.

Missing
'app_name'
in body

BAD_REQUEST 400 App name is missing.

Invalid JSON
body

BAD_REQUEST 400 JsonParseException
message.
For example:
Unexpected
character ('\"' (code
34)): was expecting
comma to separate
Object entries\n at
[Source:(forescout.pl
ugin.connect_module
.web.security.jwt.Ca
chedBodyServletInpu
tStream); line: 4,
column: 6]"

Credential
not correct

UNAUTHORIZED 401 Bad credentials

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 76

Condition Status Code Message Data

GET
https://<EM_IP>/connect/v1/hosts/<id>

Succeed OK 200 null {"hosts":[{"mac":"0
05056a83dfc","ip":"2
24.0.224.4","fields":
{"connect_cylance_i
d":"f5552f2f-d8d8-
4e4b-b4a5-
b95255253a23","con
nect_cylance_state":
"Offline","connect_cy
lance_mac_addresse
s":["00-50-56-A8-
3D-FC"]}}]}

Missing
Authorization
header

UNAUTHORIZED 401 Cannot find
authorization header
info.

Not using
Bearer token

UNAUTHORIZED 401 JWT token does not
begin with Bearer
format.

Invalid token
format

UNAUTHORIZED 401 Request to parse
invalid JWT token
failed: <exception
message>

Expired
token

UNAUTHORIZED 401 Request to parse
expired JWT token
failed: <exception
message>

Invalid token
signature

UNAUTHORIZED 401 Request to parse
JWT token with
invalid signature:
<token> failed:
<exception
message>

unsupported
token format

UNAUTHORIZED 401 Request to parse
unsupported JWT
token failed:
<exception
message>

Invalid mac
or ip address

BAD_REQUEST 400 Host id <id> is not in
correct format.
Provide IP or MAC
address.

Host not
exist

NOT_FOUND 404 Host not found by
IP/MAC address
<id>.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 77

Condition Status Code Message Data

Unable to get
properties'
names for
the given
app

INTERNAL_
SERVER_ERROR

500 Unable to get
property names for
apps: [app_name]

Exception
when get
host
properties on
the infra side

INTERNAL_
SERVER_ERROR

500 Unable to get host
properties.
Exception:
<exception
message>

POST
https://EM_IP/connect/v1/hosts

Succeed OK 200 null {"hosts":[{"mac":"0
05056a83dfc","ip":"2
24.0.224.4","fields":
{"connect_cylance_i
d":"f5552f2f-d8d8-
4e4b-b4a5-
b95255253a23","con
nect_cylance_state":
"Offline","connect_cy
lance_mac_addresse
s":["00-50-56-A8-
3D-FC"]}}]}

Invalid mac
or ip address

BAD_REQUEST 400 MAC address or IP
address is not in a
correct format.

Missing mac
and ip

BAD_REQUEST 400 Missing IP and MAC
address in the
request body. At
least one of them is
required.

Request
body is not a
valid json

BAD_REQUEST 400 Request body is not
in a valid JSON
format.

Updating a
property that
does not
have
web_enable
set

BAD_REQUEST 400 Failed to update a
property that does
not have web_enable
set: <property
name>

value for the
property is in
wrong type

BAD_REQUEST 400 Value for <property
name> is not in
correct format,
expecting <right
type>

property
doesn't exist

BAD_REQUEST 400 Failed to update an
undefined property:
<property name>

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 78

Condition Status Code Message Data

update
property
belongs to
other app

FORBIDDEN 403 Failed to update a
property that is not
authorized in the
JWT token.

unknown
exception
when
updating
property

INTERNAL_
SERVER_ERROR

500 Failed to resolve host
properties.
Exception:
<exception
message>

plugin is not
responding

INTERNAL_
SERVER_ERROR

500 Plugin is not
responding.

unknown
error

INTERNAL_
SERVER_ERROR

500 Failed to update host
properties.

Failed to
send request
to plugin

INTERNAL_
SERVER_ERROR

500 Failed to submit
request to plugin.

Connect Web Service Logs

Tomcat is shipped with the Forescout platform as a web server.

The Connect web service logs are located in the following path:
/usr/local/tomcat/webapps/logs/connect-tomcat.log

The Tomcat-related logs are located in the following path:
/usr/local/tomcat/logs

Change Log Level

There are two methods to change the log level.

The first method is to modify the logback-spring.xml file located in the following
path:
/usr/local/forescout/webapps/connect/WEB-INF/classes/logback-spring.xml

In the .xml file, change the following variable to the desired debug level: ERROR,
WARN, INFO, DEBUG, or TRACE.
logging.level.forescout.plugin.connect_module.web=INFO

After changing the log level, restart the Tomcat web server for the log level to take
effect.

The second method to change the log level is through the Spring Boot logger APIs.
This does not require a web server restart. You must include the Bearer token in the
API.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 79

The following is a curl example to get the connect web service log. Substitute your
hostname or IP address for <hostname or IP>.
curl -H "Authorization: Bearer
eyJhbGciOiJIUzUxMiJ9.eyJhcHBfbmFtZSI6ImN5bGFuY2UiLCJzdWIiOiJjaGFybGllIiwiaW
F0IjoxNjExMTA3NzIwLCJleHAiOjE2MTExMDg2MjAsInJvbCI6WyJST0xFX1VTRVIiXX0.UjVWD
feBqN6jGH-
w_nolvyKYIEVebRgHeQUXSdbdCKpmGpiJFytJNulYEcNo4EnRn4HQFyx1PNfOa1ONc-JruQ" -k
-X GET https://<hostname or
IP>/connect/actuator/loggers/forescout.plugin.connect_module.web

The following is a curl example to set the connect web service log to the debug level.
Substitute your hostname or IP address for <hostname or IP>.
curl -k -X POST -H "Authorization: Bearer
eyJhbGciOiJIUzUxMiJ9.eyJhcHBfbmFtZSI6ImN5bGFuY2UiLCJzdWIiOiJjaGFybGllIiwiaW
F0IjoxNjExMTA3NzIwLCJleHAiOjE2MTExMDg2MjAsInJvbCI6WyJST0xFX1VTRVIiXX0.UjVWD
feBqN6jGH-
w_nolvyKYIEVebRgHeQUXSdbdCKpmGpiJFytJNulYEcNo4EnRn4HQFyx1PNfOa1ONc-JruQ" -d
'{"configuredLevel": "DEBUG"}' https://<hostname or
IP>/connect/actuator/loggers/forescout.plugin.connect_module.web

Create a Connect App
To create an app, place files in a zip file.

At a minimum, an app must contain three files:

 system.conf

 property.conf

 one Python script

The zip file of the app can be named for the third-party vendor, for example,
cylance.zip.

Contents of a Zip File

In every zip file of an app, the system.conf file, property.conf file, and one or more
Python scripts must be located at the top level. There can also be two folders.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 80

This sample zip file contains the following:

 property configuration (property.conf or property.json) file (with a .conf or
.json suffix). See Define system.conf File.

 system configuration (system.conf or system.json) file (with a .conf or .json
suffix). See Define property.conf File.

 Python scripts (each with a .py suffix). See Write Python Scripts for Connect.

 folder for images, for icons in the user interface, such as icons for actions,
action groups, property groups, and policy templates. See Define Icons in
Connect.

 folder for policies, for policy templates. See Define Policy Templates in
Connect.

 The suffixes of the property configuration file and system configuration file do
not have to match, for example, an app can have a property.conf and a
system.json file.

File Size Maximum

The maximum size of the zip file is 10MB. Any single file within the zip file can have
a maximum size of 5MB. The maximums are enforced when an app is imported.

App Folder Paths

In an app, the files and folders must be as follows:

 All .conf (or .json) and all .py files are under /

 All policy template files are under /policies/nptemplates

 Icon files are in the following folders:

− Action group icon files are under /images/np_ng/action_groups
− Action icon files are under /images/np_ng/actions
− Property group icon files are under /images/np_ng/field_groups
− Policy template icon files are under /images/np_ng/templatedirs

Zip a Connect App Using a Mac

If you are using the Mac GUI Compress tool to zip the files in an app, you will need
to use a workaround.

The Mac GUI Compress tool produces a __MACOSX metadata folder as well as a
.DS_store file that are not compliant with the contents of the zip file, which is
restricted to the .conf and .py files, and the policies and images folders.

The workaround is to use the Terminal (or command line interface) zip command and
not the Mac GUI Compress tool to create the zip file for an app. For example:
zip -r dir.zip

If you already have a zip file with a __MACOSX metadata folder, you can remove it
as follows:
zip -d foo.zip __MACOSX .DS_Store

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 81

If a __MACOSX folder exists in your directory (because you previously used unzip to
create it), use the -x option to prevent it from being included in the app.

Deploy an App with Connect
This topic describes how to deploy an app with Connect. It is intended for app users
and describes downloading and installing an app, licensing, and configuring. Each
app has their own configuration details. Refer to the Readme files for each app and
also see the following:

 Download a Connect App from GitHub

 Install Connect Plugin

 Connect Add-On Optional Module

 Connect User Interface Details

Download a Connect App from GitHub
eyeExtend Connect Apps can be found on the Forescout eyeExtend Connect GitHub
page located as follows:

https://github.com/Forescout/eyeExtend-Connect

Apps signed by Forescout are in .eca format and are downloaded from GitHub as a
.eca image file.

To download a .eca image file for a Connect App from GitHub:

1. Go to the Forescout eyeExtend Connect GitHub page.

https://github.com/Forescout/eyeExtend-Connect

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 82

2. Select an app, for example, Cylance.

3. Select the .eca image file for that app.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 83

4. Select Download.

App Download Issue

If there is an Invalid Signature error when a downloaded app is imported into
Connect, the correct procedure in might not have been followed.

For example, it is not correct in Step 3 to right-click on the .eca image file and select
Save link as… This will result in the Invalid Signature error when the app is
imported into Connect.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 84

Install Connect Plugin
This topic describes how to install the Connect Plugin.

To install the module:

1. Navigate to the Downloads page on the Forescout Customer Support Portal.

2. Download the module .fpi file.

3. Save the file to the machine where the Console is installed.

4. Log into the Console and select Options from the Tools menu.

5. Select Modules. The Modules pane opens.

6. Select Install. The Open dialog box opens.

7. Browse to and select the saved module .fpi file.

8. Select Install. The Installation screen opens.

9. Select I agree to the License Agreement to confirm that you have read
and agree to the terms of the License Agreement and select Install. The
installation cannot proceed unless you agree to the license agreement.

 The installation begins immediately after selecting Install and cannot be
interrupted or canceled.

 In modules that contain more than one component, the installation
proceeds automatically one component at a time.

10. When the installation completes, select Close to close the window. The
installed module is displayed in the Modules pane.

 Some components are not automatically started following installation.

Ensure That the Connect Plugin Is Running

After installing the Connect Plugin (and configuring it, if necessary), ensure that it is
running.

To verify:

1. Select Tools > Options > Modules.

2. In the Modules pane, hover over the Connect Plugin name to view a tooltip
indicating if it is running on Forescout devices in your deployment.

The name is preceded by one of the following icons:

− - The Connect Plugin is stopped on all Forescout devices.

− - The Connect Plugin is stopped on some Forescout devices.

− - The Connect Plugin is running on all Forescout devices.

3. If the Connect Plugin is not running, select Start, and then select the relevant
Forescout devices.

4. Select OK.

https://forescout.force.com/support/apex/downloads

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 85

Install/Uninstall Connect Web Service

The Connect web service is installed and deployed with the Connect Plugin.

Note that it may take a minute or two after deployment for the web service to be
fully running and accept web requests.

When Connect is uninstalled, the Connect web service is removed.

Connect Add-On Optional Module
The Connect Add-On Module is an optional module that can be installed, which is
dependent on the installation of the Connect Plugin. It provides licensing of an
additional 20 apps. Two apps are included with the Connect Plugin license, for a total
of 22 apps.

If you need to run more than two apps, install the Connect Add-On Module and
request a license. Licenses can be for either the Per-Appliance Licensing Mode
(PALM) or the Flexx Licensing Mode.

Refer to the Connect Add-On Module How-to Guide for more information.

Without Connect Add-On Module Installed

If you do not have the Connect Add-On Module installed, you are entitled to two
apps with the Connect Plugin license. The Entitlement Status is displayed in the
Connect pane.

If you run more than two apps with the Connect Plugin license, the Entitlement
Status displays Out of compliance.

If an app is not in the Configured state or the Running state, it is not counted as in
use. The example shows four apps, but only three are both Configured and Running
(one app is not Configured), so the count of the number of apps in use is three.

If you stop one app, the number of apps in use is two (one app is not Configured and
one app is Stopped). The Entitlement Status no longer displays Out of compliance.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 86

With Connect Add-On Module Installed

The Connect Plugin and the Connect Add-On Module are installed under Options >
Modules.

 The Connect Add-On Module does not require any configuration, nor does it
have to be running.

The Entitlement Status is displayed in the Connect pane.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 87

If an app is not in the Configured state or the Running state, it is not counted as in
use. The example shows seven apps, but only five are both Configured and Running
(one is not Configured and one is Stopped), so the count of the number of apps in
use is five.

The entitlement status will be in compliance as long as the number of apps does not
exceed 22.

Connect User Interface Details
This topic provides details of the user interface. See the following:

 Connect Pane Details

 System Description Dialog Box Details

 Configure Policy Templates in Connect

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 88

Connect Pane Details
The Connect pane displays existing apps that have been imported and system
descriptions that have been configured. There can be multiple apps displayed in this
pane.

Columns in Connect Pane
There are several default columns in the Connect pane as follows:

 Signature: The signature of the imported app, which has a green checkmark
if the signature is valid or an orange caution sign if the signature is not valid
or is missing. Apps from Forescout are signed after their creation to ensure
their authenticity and integrity. See Import a Signed App.

 Name: The name of the third-party integration app, such as Cylance, defined
in the system.conf file.

 Version: The version of the app, defined in the system.conf file.

 Author: The author of the app, defined in the system.conf file.

 Last Date Modified: The date that any file in the app was last modified.

 File Name: The file name of the app.

 Import Date: The date the app was imported.

 Configured: The configuration flag, which has a checkmark if the system
description is configured. If an app has been imported, but not configured,
there will not be a checkmark in this column. To configure the system
description, see Add a System Description.

 Web Service Enabled: The web service flag, which has a checkmark if the
Connect web service is enabled.

 Status: The status of the app. The valid values are Running and Stopped.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 89

At the bottom of the Connect pane is the Entitlement Status:

 Number of apps entitled: The number of apps to which you are entitled,
based on licensing, which can be either 2 or 22. The Connect Plugin license
provides two apps. The Connect Add-On Module provides another 20 apps for
a total of 22. See Connect Add-On Optional Module. If there is no valid
Connect Plugin license, it will be 0.

 Number of apps in use: The number of apps that are Configured and
Running. Apps that are not configured and apps that are stopped are not
counted as apps in use.

When you right-click on the column titles in the Connect pane, a menu for adding
and removing columns is displayed.

To add, remove, or reorder the columns on the Connect pane, select Add/Remove
Columns. You can expand the General folder.

Move columns in the lists for Available Columns and Selected Columns and use
the Move Up and Move Down buttons to reorder the columns in the Add/Remove
Columns dialog box.

To delete a column, select it and select Remove Column in the Connect pane.

To select the best fit for a column, right-click a column title and select Best Fit
Column in the Connect pane.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 90

Buttons in Connect Pane
There are several buttons on the Connect pane for apps as follows:

Button Description

Import Import an App

Edit Edit an App

Update Update an App

Remove Remove an App

Start Start an App

Stop Stop an App

Authentication Configure Authentication for Connect Web Service

There are also Apply and Undo buttons on the Connect pane as follows:

Button Description

Apply Save the Connect configuration to the CounterACT Appliance. See Apply
Changes.

Undo Undo the previous action performed in Connect.

Import an App

Select the Import button to import apps into Connect in zip or eca format. See also
Import a Signed App.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 91

Messages are displayed as the app is imported.

If the app has been imported successfully, a message is displayed at the bottom of
the Sending dialog box.

If the app has not been imported successfully, error messages are displayed in the
Sending dialog box with a reason, such as an invalid script.

Select Close when the import has finished. If you select Close before the import has
finished, it will fail.

An error message is displayed if you try to import a duplicate app with the same
name and version as an existing app.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 92

The System Description dialog box opens. In this example, there is one column:
URL, which has been defined in the system description (in the system.conf file).

The maximum number of apps that can be imported is 22.

If a device has not been configured and you select OK in the System Description
dialog box, a warning message is displayed.

To configure a system description, select Add. See Add a System Description.

Import a Signed App

Select the Import button to import apps in eca format into Connect. Apps from
Forescout are signed after their creation to ensure their authenticity and integrity.

 Unsigned apps might cause negative impacts on hosting CounterACT
Appliances.

When you import an app, the signature of the app is validated to see if it has a valid
Forescout signature. If the validation succeeds, the app is imported.

If the validation fails, an Invalid Signature error message is displayed and the app is
not imported. See App Download Issue.

To allow an app with an invalid signature to be imported use the following command
on the Enterprise Manager:
fstool allow_unsigned_connect_app_install true

This is a global command. It disables the enforcement of signature validation for all
apps that are imported after the command is run, including apps with invalid or
missing signatures. The following warning is displayed. Proceed with caution.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 93

Update an App

Select the Update button to update an app in a limited way.

If the system.conf and property.conf files have changed, you must upgrade the app.
See Upgrade an App.

But if you made the following changes, you can use the Update button to update an
app:

 “version” change only (to a higher or a lower version) in the system.conf file

 Any content change in existing scripts

An error message is displayed if you select an app to update but then select the zip
file of another app.

Configured policies are not affected by the update.

Select Apply in the Connect pane to complete the update.

Edit an App

Select an existing app in the Connect pane and select Edit or double-click the
existing app to open the system description for it.

Remove an App

Remove an existing app before replacing it with an update of the same app.

Select an existing app in the Connect pane, select Remove to delete it, and confirm
the removal.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 94

Before an app is removed, dependencies for properties and actions are checked. An
error message is displayed if there are properties or actions configured in a policy
when you try to remove the app.

Select Details to view the specific properties and actions that are configured. You
may have to remove the policy

Select Close and then select Apply in the Connect pane.

Start an App

Select the Start button to start a selected app when it is not in the Running state.
Starting an app enables host discovery, property resolves, and actions (if applicable
and configured).

When a selected app is running, the Start button is disabled. After an app is started,
a status of Running is displayed in the Connect pane.

If an app is not selected, both the Start and Stop buttons are disabled.

If the configuration has not been saved, select Apply and then select Start.

Stop an App

Select the Stop button to stop a selected app when it is in the Running state.

For example, if one app has issues, select it and select Stop, and then investigate it.
The other apps continue running.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 95

When an app is in the Stopped state, host discovery, property resolves, and actions,
(if applicable and configured), are stopped.

When a selected app is not running, the Stop button is disabled. After an app is
stopped, a status of Stopped is displayed in the Connect pane.

If an app is not selected, both the Start and Stop buttons are disabled.

If the configuration has not been saved, select Apply and then select Stop.

Configure Authentication for Connect Web Service

Configure authentication for the Connect web service. The configuration includes the
authentication type as well as the username and password used by the Connect web
service APIs.

Authentication is configured for each app. The username and password configured
for the app will be used to obtain a JWT token through the Connect web service API.
The JWT token will then be sent with subsequent Connect web service API requests.
See Use the Connect Web Service for details.

The Web service authentication dialog box is launched as follows:

 When you import an app in which the web service is enabled in the
system.conf file. You are prompted automatically for the Web service
authentication in the System Description dialog box.

 When you select an app in the Connect pane in which the web service is
enabled and then select the Authentication button.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 96

The fields of the Authentication dialog box are as follows:

Fields Description

Authentication Type Select the type of authentication. The valid type is Authentication.

Username (Required) Enter a username.

Password (Required) Enter a password.

Verify Password Re-enter the password to verify it.

After configuring web service authentication, select OK and then select Apply in the
Connect pane to save the configuration.

Apply Changes

Select the Apply button to save the changes to the configuration.

Select Close.

Select OK.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 97

Upgrade an App

To upgrade an app when the system.conf and property.conf files have changed, you
can Remove it, Import the newer app, and then Add the configuration for the
system description. See Remove an App, Import an App, and Add a System
Description.

Since removing an app removes all configuration, you can also Export the system
description before removing the app, then Import the app and Import the system
description. See Export a System Description, Import an App, and Import a System
Description.

The upgrade steps listed above are needed when the system.conf and property.conf
files have changed. If only the content in existing scripts or only the version in the
system.conf file have changed, you can update an app. See Update an App.

Menu in Connect Pane
There is a menu available when you right-click an existing app in the Connect pane.

For Remove, Edit, Update, Import, Start, and Stop, see Buttons in Connect Pane.

For Find and Export Table, see Find Dialog Box and Export Table Dialog Box.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 98

Find Dialog Box

Find a string on the window.

To find a string:

1. Select Find.

2. Enter the text to find, select options or direction, and then select Find.

Export Table Dialog Box

Export the window contents to a spreadsheet.

To export a table:

1. Select Export Table.

2. You can:

− Export the Selected rows only and/or the Displayed columns only
− Change the File type to either Comma Separated Values Files (*.csv) or

Acrobat Reader Files (*.pdf)
− Change the folder location using Browse

 You cannot enter anything in the Title field.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 99

3. Select OK. A confirmation is displayed.

4. Select Yes. The table data opens in an Excel spreadsheet. The spreadsheet
has a default name based on the date and time, for example,
TableData_2020_06_05_09_25.csv-Excel.

System Description Dialog Box Details
After a system description is configured, it is displayed in the System Description
dialog box.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 100

Columns in System Description Dialog Box
The columns in the System Description dialog box are defined in the system.conf
file with the “add to column” parameter

When you right-click the column titles, a menu for adding and removing columns is
displayed.

To add, remove, or reorder the columns on the System Description dialog box,
select Add/Remove Columns. You can expand the General folder.

Move columns in the lists for Available Columns and Selected Columns and use
the Move Up and Move Down buttons to reorder the columns in the Add/Remove
Columns dialog box.

To delete a column, select it and select Remove Column in the System
Description dialog box.

 If there is only one column, you cannot remove it.

To select the best fit for a column, right-click a column title and select Best Fit
Column in the System Description dialog box.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 101

Buttons in System Description Dialog Box
There are several buttons for an integration on the System Description dialog box
as follows:

Button Description

Add Add a System Description

Edit Edit a System Description

Remove Remove a System Description

Test Test a System Description (Optional)

Refresh Refresh App Features

Import Import a System Description

Export Export a System Description

There are also OK and Cancel buttons on the System Description dialog box:

Button Description

OK Save the system description changes to the CounterACT Appliance.

Cancel Cancel the previous action performed in Connect.

Add a System Description

Select Add to display the first configuration panel. The number of panels in the
system description are defined in the system.conf file.

The user configuring the system description enters the information on the panel.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 102

Select Next to display the next configuration panel that is defined in the system.conf
file, such as, the predefined Assign CounterACT Devices panel.

At first, the Assign CounterACT Devices panel has only one option, Assign all
devices by default, and it is selected so that one device is added.

If you want to add a second device, the Assign CounterACT Devices panel has more
options.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 103

The user configuring the system description enters the following information for the
predefined fields on the panel:

 Connecting CounterACT Device: Select Enterprise Manager or an IP
address of the connecting CounterACT device. In an environment where more
than one CounterACT device is assigned to a single third-party instance, the
connecting CounterACT Appliance functions as a middleman between the
third-party instance and the CounterACT Appliance. The connecting
CounterACT Appliance forwards all queries and requests to and from the
third-party instance.

In general, it is not recommended to use the Enterprise Manager as the
connecting CounterACT device. But if you must, make sure that it is not used
to discover MAC-only hosts.

 Assign specific devices: This CounterACT Appliance is assigned to a third-
party instance, but it does not communicate with it directly. All
communication between the third-party instance and its assigned CounterACT
Appliance is handled by the connecting CounterACT Appliance defined for the
third-party instance. All the IP addresses handled by an assigned Appliance
must also be handled by the third-party instance to which the Appliance is
assigned.

− Select Available Devices and then select an IP address or Appliance
name from the Available Devices list.

− Select Add. The selected device will send its requests to the third-party
instance through the connecting Appliance.

 Assign all devices by default: This is the connecting Appliance to which
CounterACT Appliances are assigned by default if they are not explicitly
assigned to another connecting Appliance. Select this option to make this
connecting Appliance the middleman for all CounterACT Appliances not
assigned to another connecting device.

Note the following:

 An error message is displayed if you try to add a device that is already used.

 The focal appliance must be the managing appliance for overlapping IPs.

 If you have apps that discover 50,000 or more endpoints, distribute the apps
in such a way so that only up to two of the apps share the same focal
(connecting) appliance. An alternative is to split the endpoints across multiple
user accounts on multiple servers.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 104

Select Next to display the next configuration panel that is defined in the system.conf
file, such as, the predefined Proxy Server panel.

The user configuring the system description enters the following information for the
predefined fields on the panel:

 Use Proxy Server: Select this option if your environment routes Internet
communications through proxy servers.

 Proxy Server: Enter the Fully Qualified Domain Name (FQDN) of the proxy
server or the IPv4 address.

 Proxy Server Port: Select the port number of the proxy server.

 Proxy Server Username: Enter the administrator username used to access
the proxy server.

 Proxy Server Password: Enter the administrator password used to access
the proxy server.

 Verify Password: Re-enter the administrator password to verify it.

Select Next to display the next configuration panel that is defined in the system.conf
file, such as, the Cylance Options panel.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 105

The user configuring the system description enters the following information for the
predefined fields on the panel:

 Enable Host Discovery: Select the checkbox to enable or disable the
Discovery Frequency field.

 Discovery Frequency: Select a value for the host discovery field. See “host
discovery” Field.

 Number of API queries per unit time: Select a value for the rate limiter
field. See “rate limiter” Field.

Select Finish after the last panel.

The configured system description is displayed in the System Description dialog
box.

You can create multiple system descriptions. To add another system description,
select Add and repeat Add a System Description.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 106

Edit a System Description

Select an existing system description in the System Description dialog box and
select Edit to open it. There are tabs for each panel.

Select OK to close the dialog box.

Remove a System Description

Select an existing system description in the System Description dialog box and
select Remove to remove it. A confirmation is displayed.

Select More for details or select Ok.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 107

Scenarios for Remove

The following table describes different scenarios for removing a system description:

Description Result

The system description being removed has
the connecting appliance as the default
appliance.

If there is only one system description and it
is the default, the remove is allowed.

If there are two system descriptions, the
remove is allowed and the connecting
appliance is assigned as the default
appliance.

If there are more than two system
descriptions, the remove is not allowed. You
must select a new default before removing
the system description.

Test a System Description (Optional)

To display a Test button in the System Description dialog box, you must have the
following defined in the system.conf file:
 "testEnable":true,

Select a system description and select Test to call a Python script, for example, to
test the connectivity of an app. The app must be in the Running state.

Also, the app must be saved before selecting Test. Select OK in the System
Description dialog box and then select Apply in the Connect pane to save the
system description configuration.

When you select Test, the Sending dialog box opens.

If the connectivity of the system description has been tested successfully, a success
message is displayed.

If the test failed, a failure message is displayed with a reason, such as:

 the app is not in Running status

 the script was unable to obtain the JSON authorization token

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 108

Refresh App Features

Select a system description in the System Description dialog box and select
Refresh to refresh selected app features.

Select one or more app features to refresh and then select OK. For example, select
Discovery of hosts to manually refresh host discovery.

Depending on the app, up to three features can be selected to be refreshed:

 Authorization token

 App instance cache

 Discovery of hosts

If a feature is not supported by the app, the Refresh dialog box will show the
following text: (This feature is not supported in the app.)

If a feature is not enabled in the configuration of the app, the Refresh dialog box will
show the following text: (This feature is not enabled in the configuration.)

If none of the features are supported by the app, the Refresh button is not enabled
in the System Description dialog box.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 109

If your app has all three features and you select all of them to refresh, the refresh
occurs in the order listed above. Discovery of hosts is the last feature to refresh as it
may take the most time. If you frequently refresh, the results of one refresh may not
have completed before the next refresh is triggered.

Use the Refresh button to do a manual refresh separate from any schedule, such as
a scheduled refresh of an authorization token or polling for host discovery. After a
manual refresh, the timer is reset, so the next scheduled refresh will be postponed to
the next refresh interval. For example, when polling is scheduled for every four hours
and the next scheduled discovery is expected to be at 8:00 AM, if there is a manual
refresh two hours before at 6:00 AM, the next poll will occur four hours later, at
10:00 AM.

 A manual refresh of app instance cache does not impact its schedule.

To enable Authorization token, you must have the following defined in the
system.conf file for the app:

"authorization":true,

To enable App instance cache, you must have the following defined in the
system.conf file for the app:

"app_instance_cache":true,

To enable Discovery of hosts, you must have the following defined in the system.conf
file for the app:

"host discovery":true,

In addition, for Discovery of hosts, the Enable Host Discovery checkbox must be
selected when the system description for the app is configured.

For details, see:

 “authorization” Field

 “app_instance_cache” Field

 “host discovery” Field

Import a System Description

Select Import to import a saved backup of the configuration. The only supported
format is .xml.

To import a system description:

1. Select Import.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 110

2. To change the folder location, select Browse.

3. Select Open.

4. Select OK in the Import dialog box.

a. If the device to be imported contains encrypted fields for passwords, the
Import/Export Password dialog box opens and prompts you to enter a
password with which to encrypt the data.

b. Enter the password that you used when you exported the configuration
and select OK. See Export a System Description.

5. If the system description already exists, you have the option to Skip,
Duplicate, or Overwrite it.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 111

The Duplicate button is inactive if there is an "identifier" field set to true in
the system.conf file. This is because only one “identifier” is allowed in a
system.conf file and creating a duplicate would result in two. If you want to
duplicate a system description, you can delete the “identifier” or set the value
to false in the system.conf file.

6. The result of the import is displayed.

7. Select Close.

Scenarios for Import

The following table describes different scenarios for importing a system description:

Description Result

The imported system description is the first
configuration of this app.

The import is allowed and the imported focal
appliance is set as the default.

The imported system description will
overwrite the default appliance because the
user selected Overwrite during the import.

The import is allowed and the imported focal
appliance is set to the default.

The imported system description has the
default appliance assigned, the default is
correct, and is not a duplicate appliance.

If no system description has been configured
yet, the import is allowed.

If more than one system description is
configured, the import is allowed and the
imported focal appliance is switched to a
specific appliance.

The imported system description has the
default appliance assigned, but the default
appliance is not found. For example, the
system description might have originated
elsewhere.

If no system description has been configured
yet, the import is allowed and the Enterprise
Manager is set as the default appliance. A
warning message is displayed.

If more than one system description is
configured and if all other appliances have
been assigned to other devices, the import is
not allowed.

If more than one system description is
configured and if an appliance is available,
one is selected at random.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 112

Description Result

The imported system description has one or
more specific appliances assigned, but the
appliances are not found. For example, the
system description might have originated
elsewhere.

If all the specific appliances are not found
and if all other appliances have been
assigned to other system descriptions, the
import is not allowed.

If all the specific appliances are not found
and an appliance is available, one is selected
at random.

If some of the specific appliances are found,
the import of the correct specific appliances
is allowed.

If some of the specific appliances are found
and if all other appliances have been
assigned to other system descriptions, the
import is not allowed.

Export a System Description

Select Export to save a backup of the configuration. The only supported format is
.xml.

To export a system description:

1. Select Export.

a. If the devices contain encrypted fields for passwords, the Import/Export
Password dialog box opens and prompts you to enter a password with
which to encrypt the data.

b. Enter the password.

2. The Export Table dialog box opens. You can select to export the Selected
rows only.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 113

3. To change the folder location, select Browse.

4. Select Open.

5. Select OK in the Export Table dialog box.

6. Select Close.

 There is no Export for an app.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 114

Menu in System Description Dialog Box
There is a menu available when you right-click an existing system description in the
System Description dialog box.

For Add, Edit, Remove, Test, Refresh, Import, and Export, see Buttons in
System Description Dialog Box.

For Find and Export Table, see Find Dialog Box and Export Table Dialog Box. They
work the same as in the Connect pane.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 115

Configure Policy Templates in Connect
Policies can be configured from a policy template.

To configure a policy template:

1. In the Forescout Console, select Policy.

2. Select Add and search for the app name.

3. Expand the folder and select a policy template.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 116

4. Select Next.

5. Enter a name for the policy. Optionally, enter a description.

6. Select Next. Both the IP Address Range dialog box and the Scope pane open.

7. Use the IP Address Range dialog box to define which endpoints are inspected.

The following options are available:

a. All IPs: Include all IP addresses in the Internal Network.
b. Segment: Select a previously defined segment of the network. To specify

multiple segments, select OK or Cancel to close this dialog box, and
select Segments from the Scope pane.

c. Unknown IP addresses: Apply the policy to endpoints whose IP
addresses are not known. Endpoint detection is based on the endpoint
MAC address.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 117

8. Select OK. The added range is listed in the Scope pane.

9. Select Next.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 118

10. To add a condition, select Add in the Condition section and search for the app
name to see the properties associated with that app.

11. Configure conditions for the policy and then select OK.

12. To add an action, select Add in the Actions section and search for the app
name to see the actions associated with that app.

13. Configure actions for the policy and then select OK.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 119

14. The configured conditions and actions are displayed in the Main Rule.

15. To configure sub-rules, select Next.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 120

16. To add a sub-rule, select Add and give the sub-rule a name.

17. Configure conditions and actions for the sub-rule and select OK.

18. Select Finish. The configured policy is displayed in the Policy Manager.

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 121

Appendix A: Sample Connect Files
The following sample files are available:

 Sample system.conf File

 Sample property.conf File

 Sample Policy Template .xml File for Connect

 Sample Connect Script Files

Sample system.conf File
{

 "name":"Cylance",

 "version":"1.0.0",

 "author":"Concert Masters",

 "testEnable":true,

 "web service":true,

 "panels":[

 {

 "title":"Cylance Connection",

 "description":"Cylance Connection",

 "fields":[

 {

 "display":"URL",

 "field ID":"connect_cylance_url",

 "type":"shortString",

 "mandatory":"true",

 "add to column":"true",

 "show column":"true",

 "identifier":"true",

 "tooltip":"URL"

 },

 {

 "display":"Tenant ID",

 "field ID":"connect_cylance_tenant_id",

 "type":"shortString",

 "mandatory":"true",

 "add to column":"true",

 "show column":"false",

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 122

 "tooltip":"Tenant ID"

 },

 {

 "display":"Application ID",

 "field ID":"connect_cylance_application_id",

 "type":"shortString",

 "mandatory":"true",

 "add to column":"true",

 "show column":"false",

 "tooltip":"Application ID"

 },

 {

 "display":"Application Secret",

 "field ID":"connect_cylance_application_secret",

 "type":"encrypted",

 "mandatory":"true",

 "tooltip":"Application Secret"

 },

 {

 "certification validation":true

 },

 {

 "app_instance_cache":true,

 "display":"Custom configuration refresh interval (in
minutes)",

 "min":5,

 "max":2400,

 "value":240

 },

 {

 "authorization":true,

 "display":"Authorization Interval(in minutes)",

 "min":1,

 "max":100,

 "value":28

 }

]

 },

 {

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 123

 "focal appliance":true,

 "title":"Assign CounterACT Devices",

 "description":"<html>Select the connecting CounterACT device that
will communicate with the targeted Cylance instance, including requests by
other CounterACT devices. Specific CounterACT devices assigned here cannot
be assigned to another server elsewhere.

If you do not assign
specific devices, by default, all devices will be assigned to one server.
This server becomes known as the Default Server.<html>"

 },

 {

 "proxy server":true,

 "title":"Proxy Server",

 "description":"<html>Select a Proxy Server device to manage all
communication between CounterACT and Cylance.</html>"

 },

 {

 "title":"Cylance Options",

 "description":"Cylance Options",

 "fields": [

 {

 "host discovery": true,

 "display":"Discovery Frequency",

 "max":300000,

 "add to column":"true",

 "show column":"false",

 "value":3600

 },

 {

 "rate limiter": true,

 "display":"Number of API queries per unit time",

 "unit":1,

 "min": 1,

 "max":1000,

 "add to column":"true",

 "show column":"false",

 "value":100

 }

]

 }

]

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 124

}

Sample property.conf File
{

 "name": "Cylance",

 "groups": [

 {

 "name":"connect_cylance_cylance",

 "label":"Cylance"

 }

],

 "properties": [

 {

 "tag": "connect_cylance_state",

 "label": "Cylance State",

 "description": "Cylance State",

 "type": "string",

 "web_enable": true,

 "options": [

 {

 "name": "Online",

 "label": "Online"

 },

 {

 "name": "Offline",

 "label": "Offline"

 }

],

 "group": "connect_cylance_cylance",

 "resolvable": true,

 "require_host_access": false,

 "inventory": {

 "enable": true,

 "description": "Inventory of Cylance State"

 },

 "asset_portal": true,

 "track_change": {

 "enable": true,

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 125

 "label": "Cylance State Changed",

 "description": "Track Change property for cylance state"

 },

 "dependencies": [

 {

 "name": "mac",

 "redo_new": true,

 "redo_change": true

 }

]

 },

 {

 "tag": "connect_cylance_last_logged_in_user",

 "label": "Cylance Last Logged In User",

 "description": "Cylance Last Logged In User",

 "type": "string",

 "web_enable": true,

 "group": "connect_cylance_cylance",

 "dependencies": [

 {

 "name": "mac",

 "redo_new": true,

 "redo_change": true

 }

]

 },

 {

 "tag": "connect_cylance_mac_addresses",

 "label": "Cylance Mac Addresses",

 "description": "Cylance Mac Addresses",

 "type": "string",

 "group": "connect_cylance_cylance",

 "list": true,

 "web_enable": false,

 "dependencies": [

 {

 "name": "mac",

 "redo_new": true,

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 126

 "redo_change": true

 }

]

 },

 {

 "tag": "connect_cylance_ip_addresses",

 "label": "Cylance IP Addresses",

 "description": "Cylance IP Addresses",

 "type": "string",

 "group": "connect_cylance_cylance",

 "list": true,

 "overwrite": true,

 "web_enable": false,

 "dependencies": [

 {

 "name": "mac",

 "redo_new": true,

 "redo_change": true

 }

]

 },

 {

 "tag": "connect_cylance_is_safe",

 "label": "Cylance is Safe",

 "description": "Cylance is Safe",

 "type": "boolean",

 "group": "connect_cylance_cylance",

 "web_enable": true,

 "dependencies": [

 {

 "name": "mac",

 "redo_new": true,

 "redo_change": true

 }

]

 },

 {

 "tag": "connect_cylance_id",

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 127

 "label": "Cylance ID",

 "description": "Cylance ID",

 "type": "string",

 "group": "connect_cylance_cylance",

 "dependencies": [

 {

 "name": "mac",

 "redo_new": true,

 "redo_change": true

 }

]

 },

 {

 "tag": "connect_cylance_policy",

 "label": "Cylance Policy",

 "description": "Cylance Policy",

 "type": "composite",

 "group": "connect_cylance_cylance",

 "web_enable": true,

 "inventory": {

 "enable": true,

 "description": "Inventory of Cylance Policy"

 },

 "subfields": [

 {

 "tag": "id",

 "label": "ID",

 "description": "Policy ID",

 "type": "string",

 "inventory": true

 },

 {

 "tag": "name",

 "label": "Name",

 "description": "Policy Name",

 "type": "string",

 "inventory": true

 }

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 128

],

 "dependencies": [

 {

 "name": "mac",

 "redo_new": true,

 "redo_change": true

 }

]

 },

 {

 "tag": "connect_cylance_add_user_action",

 "label": "Cylance Add User Action Status",

 "description": "Cylance add user action status",

 "type": "composite",

 "resolvable": false,

 "group": "connect_cylance_cylance",

 "subfields": [

 {

 "tag": "status",

 "label": "Status",

 "description": "Action Status - succeeded, failed or canceled",

 "type": "string"

 },

 {

 "tag": "time",

 "label": "Complete Time",

 "description": "completed time",

 "type": "date"

 }

],

 "dependencies": [

 {

 "name": "mac",

 "redo_new": true,

 "redo_change": true

 }

]

 }

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 129

],

 "action_groups": [

 {

 "name":"connect_cylance_cylance",

 "label":"Cylance"

 }

],

 "actions": [

 {

 "name": "connect_cylance_add_user",

 "label": "Add User",

 "group": "connect_cylance_cylance",

 "description": "Add New User",

 "ip_required": false,

 "threshold_percentage": 1,

 "params": [

 {

 "name": "cylance_email",

 "label": "Email address",

 "description": "Cylance email address",

 "type": "string"

 },

 {

 "name": "cylance_first_name",

 "label": "First name",

 "description": "Cylance first name",

 "type": "string"

 },

 {

 "name": "cylance_last_name",

 "label": "Last name",

 "description": "Cylance last name",

 "type": "string"

 }

],

 "dependencies": [

 {

 "name": "mac",

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 130

 "redo_new": true,

 "redo_change": true

 }

],

 "undo": {

 "label": "Cancel Cylance Add User",

 "description": "Remove Added User"

 }

 }

],

 "scripts": [

 {

 "name": "cylance_resolve.py",

 "properties": [

 "connect_cylance_state",

 "connect_cylance_last_logged_in_user",

 "connect_cylance_mac_addresses",

 "connect_cylance_is_safe",

 "connect_cylance_id"

]

 },

 {

 "name": "cylance_add_user.py",

 "actions": [

 "connect_cylance_add_user"

]

 },

 {

 "name": "cylance_delete_user.py",

 "is_cancel": true,

 "actions": [

 "connect_cylance_add_user"

]

 },

 {

 "name": "cylance_test.py",

 "test": true

 },

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 131

 {

 "name": "cylance_poll.py",

 "discovery": true

 },

 {

 "name":"cylance_authorization.py",

 "authorization":true

 },

 {

 "name":"cylance_users.py",

 "app_instance_cache": true

 }

],

 "policy_template": {

 "policy_template_group": {

 "name": "connect_cylance",

 "label": "Cylance",

 "display": "Cylance",

 "description": "Cylance templates",

 "full_description": "<html>Use Cylance policy templates to manage
devices in a Cylance environment:Detect devices that are
compliant.</html>",

 "title_image": "connect_cylance.png"

 },

 "policies": [

 {

 "name": "connect_cylance_compliant",

 "label": "Cylance Compliant",

 "display": "Cylance Compliant",

 "help": "Cylance Compliant Policy",

 "description": "Creates Cylance compliant policies",

 "file_name": "CylanceCompliance.xml",

 "full_description": "<html>Use this policy template to detect
corporate hosts that are compliant.</html>",

 "title_image": "connect_cylance.png"

 }

]

 }

}

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 132

Sample Policy Template .xml File for Connect
<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<RULES>

 <RULE APP_VERSION="8.2.0-260" CACHE_TTL="259200"
CACHE_TTL_SYNCED="true" CLASSIFICATION="REG_STATUS" DESCRIPTION=""
ENABLED="true" ID="-62618880823091844" NAME="Cylance Compliance"
NOT_COND_UPDATE="true" UPGRADE_PERFORMED="true">

 <GROUP_IN_FILTER/>

 <INACTIVITY_TTL TTL="0" USE_DEFAULT="true"/>

 <ADMISSION_RESOLVE_DELAY TTL="0" USE_DEFAULT="true"/>

 <MATCH_TIMING RATE="28800" SKIP_INACTIVE="true">

 <ADMISSION ALL="true"/>

 </MATCH_TIMING>

 <EXPRESSION EXPR_TYPE="SIMPLE">

 <!--Rule expression. Rule name is: Cylance Compliance-->

 <CONDITION EMPTY_LIST_VALUE="false"
FIELD_NAME="connect_cylance_id" LABEL="Cylance ID" LEFT_PARENTHESIS="0"
LOGIC="AND" PLUGIN_NAME="Integration connect" PLUGIN_UNIQUE_NAME="connect"
PLUGIN_VESRION="1.0.0" PLUGIN_VESRION_NUMBER="24"
RET_VALUE_ON_UKNOWN="IRRESOLVED" RIGHT_PARENTHESIS="0">

 <FILTER CASE_SENSITIVE="false" FILTER_ID="-
7121200522400372370" TYPE="any">

 <VALUE VALUE2="Any"/>

 </FILTER>

 </CONDITION>

 </EXPRESSION>

 <EXCEPTION NAME="ip" UNKNOWN_EVAL="UNMATCH"/>

 <EXCEPTION NAME="mac" UNKNOWN_EVAL="UNMATCH"/>

 <EXCEPTION NAME="nbthost" UNKNOWN_EVAL="UNMATCH"/>

 <EXCEPTION NAME="user" UNKNOWN_EVAL="UNMATCH"/>

 <EXCEPTION NAME="group" UNKNOWN_EVAL="UNMATCH"/>

 <ORIGIN NAME="CUSTOM"/>

 <UNMATCH_TIMING RATE="28800" SKIP_INACTIVE="true">

 <ADMISSION ALL="true"/>

 </UNMATCH_TIMING>

 <SEGMENT ID="-8382841726644142831" NAME="CALAB-network-vlan4">

 <RANGE FROM="10.100.4.0" TO="10.100.4.255"/>

 </SEGMENT>

 <RULE_CHAIN>

 <INNER_RULE APP_VERSION="8.2.0-260" CACHE_TTL="259200"
CACHE_TTL_SYNCED="true" CLASSIFICATION="REG_STATUS" DESCRIPTION=""

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 133

ID="1521177796609562553" NAME="Cylance is Safe" NOT_COND_UPDATE="true"
RECHECK_MAIN_RULE_DEF="true">

 <MATCH_TIMING RATE="28800" SKIP_INACTIVE="true">

 <ADMISSION ALL="true"/>

 </MATCH_TIMING>

 <EXPRESSION EXPR_TYPE="SIMPLE">

 <!--Rule expression. Rule name is: Cylance is Safe-->

 <CONDITION EMPTY_LIST_VALUE="false"
FIELD_NAME="connect_cylance_is_safe" LABEL="Cylance is Safe"
LEFT_PARENTHESIS="0" LOGIC="AND" PLUGIN_NAME="Integration connect"
PLUGIN_UNIQUE_NAME="connect" PLUGIN_VESRION="1.0.0"
PLUGIN_VESRION_NUMBER="24" RET_VALUE_ON_UKNOWN="UNMATCH"
RIGHT_PARENTHESIS="0">

 <FILTER FILTER_ID="-7261535076996746710"
VALUE="true"/>

 </CONDITION>

 </EXPRESSION>

 </INNER_RULE>

 <INNER_RULE APP_VERSION="8.2.0-260" CACHE_TTL="259200"
CACHE_TTL_SYNCED="true" CLASSIFICATION="REG_STATUS" DESCRIPTION=""
ID="2234868120810677044" NAME="Cylance is not safe" NOT_COND_UPDATE="true"
RECHECK_MAIN_RULE_DEF="true">

 <MATCH_TIMING RATE="28800" SKIP_INACTIVE="true">

 <ADMISSION ALL="true"/>

 </MATCH_TIMING>

 </INNER_RULE>

 </RULE_CHAIN>

 <REPORT_TABLES/>

 </RULE>

</RULES>

Sample Connect Script Files
The following sample Python scripts, with commenting, are available:

 Sample Test Script for Connect

 Sample Polling Script for Connect

 Sample Resolve Script for Connect

 Sample App Instance Cache Script for Connect

 Sample Add a User Action Script for Connect

 Sample Delete a User Action Script for Connect

 Sample Authorization Script for Connect

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 134

Sample Test Script for Connect
import jwt # PyJWT version 1.6.1 as of the time of authoring

import uuid

import json

import urllib.request

import time

from time import gmtime, strftime, sleep

from datetime import datetime, timedelta

CONFIGURATION

All server configuration fields will be available in the 'params'
dictionary.

jwt_token = params["connect_authorization_token"] # auth token

response = {}

Like the action response, the response object must have a "succeeded"
field to denote success. It can also optionally have

a "result_msg" field to display a custom test result message.

if "connect_authorization_token" in params and
params["connect_authorization_token"] != "":

 response["succeeded"] = True

 response["result_msg"] = "Successfully connected."

else:

 response["succeeded"] = False

 response["result_msg"] = "Could not connect to Cylance server."

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 135

Sample Polling Script for Connect
import jwt # PyJWT version 1.6.1 as of the time of authoring

import uuid

import time

from time import gmtime, strftime, sleep

from datetime import datetime, timedelta

Mapping between Cylance API response fields to CounterACT properties

cylance_to_ct_props_map = {

 "state": "connect_cylance_state",

 "mac_addresses": "connect_cylance_mac_addresses",

 "id": "connect_cylance_id"

}

CONFIGURATION

url = params["connect_cylance_url"] # Server URL

response = {}

endpoints=[]

Check if we have valid auth token or not before processing.

if "connect_authorization_token" in params and
params["connect_authorization_token"] != "":

 # ***** PART 2 - QUERY FOR DEVICES ***** #

 jwt_token = params["connect_authorization_token"]

 GETMAC_URL = url + "/devices/v2/"

 device_headers = {"Content-Type": "application/json; charset=utf-8",
"Authorization": "Bearer " + str(jwt_token)}

 # Get MAC data

 request = urllib.request.Request(GETMAC_URL, headers=device_headers)

 try:

 r = urllib.request.urlopen(request, context=ssl_context)

 request_response = json.loads(r.read())

 # For polling, the response dictionary must contain a list
called "endpoints", which will contain new endpoint information. Each
endpoint

 # must have a field named either "mac" or "ip". The endpoint
object/dictionary may also have a "properties" field, which contains
property information in the format

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 136

 # {"propert_name": "property_value"}. The full response object,
for example would be:

 # {"endpoints":

 # [

 # {"mac": "001122334455",

 # "properties":

 # {"property1": "property_value", "property2":
"property_value2"}

 # }

 #]

 #}

 for endpoint_data in request_response["page_items"]:

 endpoint = {}

 mac_with_dash = endpoint_data["mac_addresses"][0]

 mac = "".join(mac_with_dash.split("-"))

 endpoint["mac"] = mac

 properties = {}

 for key, value in endpoint_data.items():

 if key in cylance_to_ct_props_map and key is not
"mac_addresses":

 properties[cylance_to_ct_props_map[key]] =
value

 endpoint["properties"] = properties

 endpoints.append(endpoint)

 response["endpoints"] = endpoints

 except:

 response["error"] = "Could not retrieve endpoints."

else:

 response["error"] = "Unauthorized"

Sample Resolve Script for Connect
import jwt # PyJWT version 1.6.1 as of the time of authoring

import uuid

import time

from time import gmtime, strftime, sleep

from datetime import datetime, timedelta

Mapping between Cylance API response fields to CounterACT properties

cylance_to_ct_props_map = {

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 137

 "state": "connect_cylance_state",

 "last_logged_in_user": "connect_cylance_last_logged_in_user",

 "mac_addresses": "connect_cylance_mac_addresses",

 "is_safe": "connect_cylance_is_safe",

 "id": "connect_cylance_id"

}

CONFIGURATION

All server configuration fields will be available in the 'params'
dictionary.

url = params["connect_cylance_url"] # Server URL

response = {}

Check if we have valid auth token or not before processing.

if "connect_authorization_token" in params and
params["connect_authorization_token"] != "":

 # For properties and actions defined in the 'property.conf' file,
CounterACT properties can be added as dependencies. These values will be

 # found in the params dictionary if CounterACT was able to resolve
the properties. If not, they will not be found in the params dictionary.

 jwt_token = params["connect_authorization_token"]

 if "mac" in params:

 mac = '-'.join(params["mac"][i:i+2] for i in range(0,12,2))

 GETMAC_URL = url + "/devices/v2/macaddress/" + mac

 device_headers = {"Content-Type": "application/json;
charset=utf-8", "Authorization": "Bearer " + str(jwt_token)}

 # Get MAC data

 request = urllib.request.Request(GETMAC_URL,
headers=device_headers)

 try:

 r = urllib.request.urlopen(request, context=ssl_context)

 request_response = json.loads(r.read())

 # All responses from scripts must contain the JSON
object 'response'. Host property resolve scripts will need to populate a

 # 'properties' JSON object within the JSON object
'response'. The 'properties' object will be a key, value mapping between
the

 # CounterACT property name and the value of the
property.

 properties = {}

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 138

 if request_response:

 return_values = request_response[0]

 for key, value in return_values.items():

 if key in cylance_to_ct_props_map:

 properties[cylance_to_ct_props_map[key]] = value

 response["properties"] = properties

 except Exception as e:

 response["error"] = "Could not resolve properties:
{}".format(str(e))

 else:

 response["error"] = "No mac address to query the endpoint for."

else:

 response["error"] = "Unauthorized"

Sample App Instance Cache Script for Connect
import jwt # PyJWT version 1.6.1 as of the time of authoring

import uuid

import time

from time import gmtime, strftime, sleep

from datetime import datetime, timedelta

from urllib.request import HTTPError, URLError

CONFIGURATION

url = params["connect_cylance_url"] # Server URL

response = {}

Check if we have valid auth token or not before processing.

if "connect_authorization_token" in params and
params["connect_authorization_token"] != "":

 # ***** PART 2 - QUERY FOR USERS ***** #

 jwt_token = params["connect_authorization_token"]

 try:

 GETUSERS_URL = url + "/users/v2/"

 device_headers = {"Content-Type": "application/json; charset=utf-
8", "Authorization": "Bearer " + str(jwt_token)}

 # Get users to save as app instance cache

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 139

 request = urllib.request.Request(GETUSERS_URL,
headers=device_headers)

 r = urllib.request.urlopen(request, context=ssl_context)

 request_response = json.loads(r.read())

 response_obj = {}

 for user_data in request_response["page_items"]:

 user = {}

 email = user_data["email"]

 user["id"] = user_data["id"];

 user["first_name"] = user_data["first_name"]

 user["last_name"] = user_data["last_name"]

 response_obj[email] = user

 # For app instance cache, use the 'connect_app_instance_cache' to
be the response key.

 # The value needs to be a string. It can be a json string
containing different fields or any other format,

 # depending on how you want to use the data in other scripts.

 response["connect_app_instance_cache"] = json.dumps(response_obj)

 logging.debug("response: {}".format(response))

 except HTTPError as e:

 response["error"] = "Could not connect to Cylance. Response code:
{}".format(e.code)

 except URLError as e:

 response["error"] = "Could not connect to Cylance.
{}".format(e.reason)

 except Exception as e:

 response["error"] = "Could not connect to Cylance.
{}".format(str(e))

else:

 # In the response, put 'error' to indicate the error message.

 # 'connect_app_instance_cache' is optinal when it has error.

 # if connect_app_instance_cache is in the response object, it will
overwrite previous cache value.

 # Otherwise, the previous cache value will remain the same.

 response["connect_app_instance_cache"] = "{}"

 response["error"] = "No authorization token found"

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 140

Sample Add a User Action Script for Connect
import jwt # PyJWT version 1.6.1 as of the time of authoring

import uuid

import time

from time import gmtime, strftime, sleep

from datetime import datetime, timedelta

from urllib.request import HTTPError, URLError

CONFIGURATION

All server configuration fields will be available in the 'params'
dictionary.

url = params["connect_cylance_url"] # Server URL

response = {}

properties = {}

action_status = {}

Check if we have valid auth token or not before processing.

if "connect_authorization_token" in params and
params["connect_authorization_token"] != "":

 # ***** Execute add user action ***** #

 jwt_token = params["connect_authorization_token"]

 # connect_app_instance_cache data is available when you enable
app_instance_cache feature in system.conf

 # the data is available in the 'params' dictionary.

 # In this example, we are getting the existing users.

 user_list = params.get("connect_app_instance_cache")

 user_email = params["cylance_email"]

 if user_list is not None and user_email in user_list:

 # return action failed if user already exists

 logging.debug("User {} already exists. ".format(user_email))

 response["succeeded"] = False

 response["troubleshooting"] = "User already exists."

 action_status["status"] = "Failed. User already exists."

 action_status["time"] = int(time.time())

 # Add properties dictionary to response to resolve properties.
It is optional

 properties["connect_cylance_add_user_action"] = action_status

 response["properties"] = properties

 else:

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 141

 ADD_USER_URL = url + "/users/v2/"

 device_headers = {"Content-Type": "application/json;
charset=utf-8", "Authorization": "Bearer " + str(jwt_token)}

 body = dict()

 # For actions, you can specify user inputted parameters that
must be defined in the 'property.conf' file. These parameters will take in
user input

 # from the CounterACT console and will be available in the
'params' dictionary.

 body["email"] = params["cylance_email"]

 body["user_role"] = "00000000-0000-0000-0000-000000000001"

 body["first_name"] = params["cylance_first_name"]

 body["last_name"] = params["cylance_last_name"]

 zones = dict()

 zone_array = list()

 zones["id"] = "0927bf62-83f4-4766-a825-0b5d2e9749d0"

 zones["role_type"] = "00000000-0000-0000-0000-000000000002"

 zones["role_name"] = "User"

 zone_array.append(zones)

 body["zones"] = zone_array

 json_body = json.dumps(body).encode('utf-8')

 request = urllib.request.Request(ADD_USER_URL,
headers=device_headers, data=json_body)

 try:

 r = urllib.request.urlopen(request, context=ssl_context)

 # For actions, the response object must have a field
named "succeeded" to denote if the action suceeded or not.

 # The field "troubleshooting" is optional to display
user defined messages in CounterACT for actions. The field

 # "cookie" is available for continuous/cancellable
actions to store information for the same action. For this example,

 # the cookie stores the id of the user, which will be
used to delete the same user when this action is cancelled.

 response["succeeded"] = True

 request_response = json.loads(r.read())

 id = request_response['id']

 logging.debug("The cookie content is {}".format(id))

 response["cookie"] = id

 action_status["status"] = "Succeeded"

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 142

 action_status["time"] = int(time.time())

 properties["connect_cylance_add_user_action"] =
action_status

 properties["connect_cylance_last_logged_in_user"] =
params["cylance_email"]

 response["properties"] = properties

 except HTTPError as e:

 response["succeeded"] = False

 response["troubleshooting"] = "Failed action. Response
code: {}".format(e.code)

 action_status["status"] = "Failed. HTTPError."

 action_status["time"] = int(time.time())

 properties["connect_cylance_add_user_action"] =
action_status

 response["properties"] = properties

 except URLError as e:

 response["troubleshooting"] = "Failed action.
{}".format(e.reason)

 response["succeeded"] = False

 action_status["status"] = "Failed. URLError."

 action_status["time"] = int(time.time())

 properties["connect_cylance_add_user_action"] =
action_status

 response["properties"] = properties

 except Exception as e:

 response["troubleshooting"] = "Failed action.
{}".format(str(e))

 response["succeeded"] = False

 action_status["status"] = "Failed. Exception."

 action_status["time"] = int(time.time())

 properties["connect_cylance_add_user_action"] =
action_status

 response["properties"] = properties

else:

 response["succeeded"] = False

 response["troubleshooting"] = "Unauthorized"

 action_status["status"] = "Failed. Unauthorized."

 action_status["time"] = int(time.time())

 properties["connect_cylance_add_user_action"] = action_status

 response["properties"] = properties

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 143

Sample Delete a User Action Script for Connect
import jwt # PyJWT version 1.6.1 as of the time of authoring

import uuid

import time

from time import gmtime, strftime, sleep

from datetime import datetime, timedelta

from urllib.request import HTTPError, URLError

CONFIGURATION

All server configuration fields will be available in the 'params'
dictionary.

url = params["connect_cylance_url"] # Server URL

response = {}

properties = {}

action_status = {}

Check if we have valid auth token or not before processing.

if "connect_authorization_token" in params and
params["connect_authorization_token"] != "":

 # ***** PART 2 - DELETE USER ***** #

 # Here, the cookie that was set in adding the user is being used. The
user id is used to delete the user.

 jwt_token = params["connect_authorization_token"]

 DELETE_USER_URL = url + "/users/v2/" + params["cookie"]

 device_headers = {"Authorization": "Bearer " + str(jwt_token)}

 request = urllib.request.Request(DELETE_USER_URL,
headers=device_headers, method='DELETE')

 try:

 r = urllib.request.urlopen(request, context=ssl_context)

 response["succeeded"] = True

 action_status["status"] = "Succeeded"

 action_status["time"] = int(time.time())

 properties["connect_cylance_add_user_action"] = action_status

 response["properties"] = properties

 except HTTPError as e:

 response["troubleshooting"] = "Failed action. Response code:
{}".format(e.code)

 response["succeeded"] = False

 action_status["status"] = "Failed. HTTPError."

 action_status["time"] = int(time.time())

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 144

 properties["connect_cylance_add_user_action"] = action_status

 response["properties"] = properties

 except URLError as e:

 response["troubleshooting"] = "Failed action.
{}".format(e.reason)

 response["succeeded"] = False

 action_status["status"] = "Failed. URLError."

 action_status["time"] = int(time.time())

 properties["connect_cylance_add_user_action"] = action_status

 response["properties"] = properties

 except Exception as e:

 response["troubleshooting"] = "Failed action.
{}".format(str(e))

 response["succeeded"] = False

 action_status["status"] = "Failed. Exception."

 action_status["time"] = int(time.time())

 properties["connect_cylance_add_user_action"] = action_status

 response["properties"] = properties

else:

 response["succeeded"] = False

 response["troubleshooting"] = "Unauthorized"

 action_status["status"] = "Failed. Unauthorized."

 action_status["time"] = int(time.time())

 properties["connect_cylance_add_user_action"] = action_status

 response["properties"] = properties

Sample Authorization Script for Connect
import jwt # PyJWT version 1.6.1 as of the time of authoring

import uuid

import json

import urllib.request

import time

from time import gmtime, strftime, sleep

from datetime import datetime, timedelta

CONFIGURATION

All server configuration fields will be available in the 'params'
dictionary.

url = params["connect_cylance_url"] # Server URL

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 145

tenant = params["connect_cylance_tenant_id"] # Tenant ID

app = params["connect_cylance_application_id"] # Application ID

secret = params["connect_cylance_application_secret"] # Application Secret

***** START - AUTH API CONFIGURATION ***** #

timeout = 1800 # 30 minutes from now

now = datetime.utcnow()

timeout_datetime = now + timedelta(seconds=timeout)

epoch_time = int((now - datetime(1970, 1, 1)).total_seconds())

epoch_timeout = int((timeout_datetime - datetime(1970, 1,
1)).total_seconds())

jti_val = str(uuid.uuid4())

claims = {

 "exp": epoch_timeout,

 "iat": epoch_time,

 "iss": "http://cylance.com",

 "sub": app,

 "tid": tenant,

 "jti": jti_val,

}

encoded = jwt.encode(claims, secret, algorithm='HS256')

payload = {"auth_token": encoded.decode("utf-8")}

headers = {"Content-Type": "application/json; charset=utf-8"}

Making an API call to get the JWT token

request = urllib.request.Request(url + "/auth/v2/token", headers=headers,
data=bytes(json.dumps(payload), encoding="utf-8"))

response = {}

try:

 # To use the server validation feature, use the keyword 'ssl_context'
in the http request

 resp = urllib.request.urlopen(request, context=ssl_context)

 jwt_token = json.loads(resp.read())['access_token'] # access_token to
be passed to GET request

 response["token"] = jwt_token

except:

 response["token"] = ""

eyeExtend Connect Module: Connect Plugin Application Building and Deployment Guide

Version 1.5 146

Appendix B: Swagger User Interface

Select a definition v1

eyeExtend Connect App APIs
[Base URL: 10.100.1.214]
https://10.100.1.214/connect/v2/api-docs?group=v1

The eyeExtend Connect App inbound APIs enable access to the Connect App framework.

Schemes

HTTPS Authorize

Host Host Info Controller

POSTPOST /connect /v1 /hosts Update host info

Parameters Try it out

Name Description

body *
string

(body)

Host's MAC and/or IP address and properties to update

Model

Parameter content type

application/json

Responses Response content type application/json

 Version 1.0

required

Example Value

{
 "ip":"10.100.1.63",
 "mac":"009027390a7c",
 "properties":{
 "connect_cylance_is_safe":false,
 "connect_cylance_last_logged_in_user":"admin"
 }
}

https://10.100.1.214/connect/v2/api-docs?group=v1

Code Description

200
Request succeeded

Model

400
Bad request. Request parameter or body may not in correct format. Check actual
message.

401
Unauthorized. JWT token provided is not authorized. Check actual message.

403
Forbidden. The app is not authorized in provided JWT token. Check actual message.

Example Value

{
 "status":"OK",
 "code":200,
 "message":null,
 "data":{
 "hosts":[
 {
 "mac":"005056a83dfc",
 "ip":"1.1.1.1",
 "properties":{
 "connect_cylance_is_safe":"true",
 "connect_cylance_last_logged_in_user":"CA-S8-W7-1\\Administrator",
 }
 }
]
 }
}

Example Value

{
 "status":"BAD_REQUEST",
 "code":400,
 "message":"Error message"
}

Example Value

{
 "status":"UNAUTHORIZED",
 "code":401,
 "message":"Error message"
}

Example Value

{
 "status":"FORBIDDEN",
 "code":403,
 "message":"Error message"
}

Code Description

500
Internal server error. No expected response from Forescout. Check actual message.

GETGET /connect /v1 /hosts /{id} Get single host properties for a specified app

Parameters Try it out

Name Description

id *
string

(path)

IP or MAC address

1.1.1.1 or 112233445566

properties
string

(query)

Names of properties to return

propertyName1,propertyName2

Responses Response content type application/json

Code Description

Example Value

{
 "status":"INTERNAL_SERVER_ERROR",
 "code":500,
 "message":"Error message"
}

required

Code Description

200
Request succeeded

Model

400
Bad request. Request parameter or body may not in correct format. Check actual
message.

401
Unauthorized. JWT token provided is not authorized. Check actual message.

404
Not found. Host with this IP or MAC address is not found. Check actual message.

Example Value

{
 "status":"OK",
 "code":200,
 "message":null,
 "data":{
 "hosts":[
 {
 "mac":"005056a83dfc",
 "ip":"1.1.1.1",
 "properties":{
 "connect_cylance_is_safe":"true",
 "connect_cylance_last_logged_in_user":"CA-S8-W7-1\\Administrator",
 "connect_cylance_id":"f5552f2f-d8d8-4e4b-b4a5-b95255253a23",
 "connect_cylance_state":"Offline",
 "connect_cylance_mac_addresses":["00-50-56-A8-3D-FC"]
 }
 }
]
 }
}

Example Value

{
 "status":"BAD_REQUEST",
 "code":400,
 "message":"Error message"
}

Example Value

{
 "status":"UNAUTHORIZED",
 "code":401,
 "message":"Error message"
}

Example Value

{
 "status":"NOT_FOUND",
 "code":404,
 "message":"Error message"
}

Code Description

500
Internal server error. No expected response from Forescout. Check actual message.

Index Web Controller

GETGET /connect /v1 Default page

Parameters Try it out

No parameters

Responses Response content type application/json

Code Description

200
Request succeeded

Model

401
Unauthorized. JWT token provided is not authorized. Check actual message.

Model

Example Value

{
 "status":"INTERNAL_SERVER_ERROR",
 "code":500,
 "message":"Error message"
}

Example Value

{
 "status":"OK",
 "code":200,
 "message":null,
 "data":"Connect"
}

Example Value

{
 "status":"UNAUTHORIZED",
 "code":401,
 "message":"Error message"
}

Code Description

500
Internal server error. No expected response from Forescout. Check actual message.

Model

JWT Token

POSTPOST /connect /v1 /authentication /token Get a JWT token

Method to get JWT token. After obtaining the token, copy it. Select the Authorize button and enter the token in
format "Bearer ". The token is added to the header for all APIs.

Parameters Try it out

Name Description

body *
string

(body)

Provide credentials and app name to obtain the JWT token. The "expiration"
variable is optional and defaults to 15 minutes.

Model

Parameter content type

application/json

Responses Response content type application/json

Code Description

Example Value

{
 "status":"INTERNAL_SERVER_ERROR",
 "code":500,
 "message":"Error message"
}

required

Example Value

{
 "username":"username",
 "password":"password",
 "app_name":"cylance",
 "expiration":"15"
}

Code Description

200

Successful response

400
Bad request

401
Failed to authorize

500
Server failed to respond

Models

Example Value

{
 "status":"200 OK",
 "code":"200",
 "message":"null",
 "data":"{
 "token":
"eyJhbGciOiJIUzUxMiJ9.eyJhcHBfbmFtZSI6ImN5bGFuY2UiLCJzdWIiOiJhZG1pbiIsImlhdCI6MTYxMDM0Nj
gxMSwiZXhwIjoxNjEwMzQ3NzExLCJyb2wiOlsiUk9MRV9VU0VSIl19.iAxwATzEmCZavbLf1wNwTgvPwQ3nMix3d
LwvlQawYBu0yppRmtr-dyA6LN7-s2nlZGDoFjjAiANcRnAIkPDRuA",
 "app_name": "cylance",
 "expire_time": 1610347711656
 }"
}

Example Value

{
 "status":"400 BAD_REQUEST",
 "code":"400",
 "message":"Error message"
}

Example Value

{
 "status":"401 UNAUTHORIZED",
 "code":"401",
 "message":"Error message"
}

Example Value

{
 "status":"500 INTERNAL_SERVER_ERROR",
 "code":"500",
 "message":"Error message"
}

{
description:

Response from a successful API call.

code integer($int32)

Status code of the API call. Use HttpStatus value.

data
{
description:

Data returned in JSON format. Can be empty.

}
message string

Message for the API call. Used commonly for error messages. Do not use
this field to check if the API is successful.

status string

Status of the API call. Use HttpStatus.

Enum:

[ACCEPTED, ALREADY_REPORTED, BAD_GATEWAY, BAD_REQUEST,
BANDWIDTH_LIMIT_EXCEEDED, CHECKPOINT, CONFLICT, CONTINUE, CREATED,
DESTINATION_LOCKED, EXPECTATION_FAILED, FAILED_DEPENDENCY, FORBIDDEN,
FOUND, GATEWAY_TIMEOUT, GONE, HTTP_VERSION_NOT_SUPPORTED, IM_USED,
INSUFFICIENT_SPACE_ON_RESOURCE, INSUFFICIENT_STORAGE,
INTERNAL_SERVER_ERROR, I_AM_A_TEAPOT, LENGTH_REQUIRED, LOCKED,
LOOP_DETECTED, METHOD_FAILURE, METHOD_NOT_ALLOWED, MOVED_PERMANENTLY,
MOVED_TEMPORARILY, MULTIPLE_CHOICES, MULTI_STATUS,
NETWORK_AUTHENTICATION_REQUIRED, NON_AUTHORITATIVE_INFORMATION,
NOT_ACCEPTABLE, NOT_EXTENDED, NOT_FOUND, NOT_IMPLEMENTED, NOT_MODIFIED,
NO_CONTENT, OK, PARTIAL_CONTENT, PAYLOAD_TOO_LARGE, PAYMENT_REQUIRED,
PERMANENT_REDIRECT, PRECONDITION_FAILED, PRECONDITION_REQUIRED,
PROCESSING, PROXY_AUTHENTICATION_REQUIRED,
REQUESTED_RANGE_NOT_SATISFIABLE, REQUEST_ENTITY_TOO_LARGE,
REQUEST_HEADER_FIELDS_TOO_LARGE, REQUEST_TIMEOUT, REQUEST_URI_TOO_LONG,
RESET_CONTENT, SEE_OTHER, SERVICE_UNAVAILABLE, SWITCHING_PROTOCOLS,
TEMPORARY_REDIRECT, TOO_EARLY, TOO_MANY_REQUESTS, UNAUTHORIZED,
UNAVAILABLE_FOR_LEGAL_REASONS, UNPROCESSABLE_ENTITY,
UNSUPPORTED_MEDIA_TYPE, UPGRADE_REQUIRED, URI_TOO_LONG, USE_PROXY,
VARIANT_ALSO_NEGOTIATES]

}

ConnectApiResponse

{
description:

Response from a successful API call.

code integer($int32)

Status code of the API call. Use HttpStatus value.

data
{
description:

Data returned in JSON format. Can be empty.

}
message string

Message for the API call. Used commonly for error messages. Do not use
this field to check if the API is successful.

status string

Status of the API call. Use HttpStatus.

Enum:

Array [68]
}

ConnectApiResponse«Hosts»

{
description:

Response from a failed API call.

code integer($int32)

Status code of the API call. Use HttpStatus value.

message string

Message for the API call. Used commonly for error messages. Do not use
this field to check if the API is successful.

status string

Status of the API call. Use HttpStatus.

Enum:

Array [68]
}

ConnectErrorResponse

{
description:

Host as an endpoint on the Forescout platform

ip string
example: 1.1.1.1

IP address

mac string
example: 112233445566

MAC address

properties
{
description:

Properties

}
}

Host

{
description:

Collection of hosts

hosts
[

Collection of hosts

{
description:

Host as an endpoint on the Forescout platform

ip string
example: 1.1.1.1

IP address

mac string
example: 112233445566

MAC address

properties
{...}

}]
}

Hosts

Host

{
description:

Content of JWT token

app_name string

App name that the token is generated for.

expire_time integer($int64)

Epoch time when the token will expire.

token string

JWT token. Use 'Bearer token' format in Authorization.

}

JwtAuthToken

	About the Connect Plugin
	Audience
	About this Guide
	What an App Builder Does
	Supported Forescout Platform Version
	Customer Support
	Architecture
	About Apps

	Connect User Interface Overview
	Connect Pane Overview
	System Description Dialog Box Overview

	Build an App with Connect
	Define system.conf File
	Define Name, Version, and Author in system.conf
	Name, Version, and Author in User Interface
	Test Button in User Interface
	Web Service Enabled in User Interface
	Parameter Details for Name, Version, Author, and Test Button
	Edit Name, Version, and Author

	Define User Interface Panels and Fields in system.conf
	Panels and Fields in User Interface
	Parameter Details for Panels and Fields
	Define Panels and Fields
	“mandatory” Parameter
	Error Message for “identifier” Parameter in User Interface
	“show column” Parameter in User Interface
	“add to column” Parameter in User Interface
	“type” Parameter Details
	“certification validation” Field
	“app_instance_cache” Field
	“authorization” Field
	“rate limiter” Field
	“host discovery” Field
	Assign CounterACT Devices Panel Details
	Proxy Server Panel Details

	Summary of system.conf Rules

	Define property.conf File
	Define Name in property.conf
	Parameter Details for Name

	Define Property Groups in property.conf
	“groups” in User Interface
	Parameter Details for Property Groups

	Define Properties in property.conf
	“properties” in User Interface
	Parameter Details for Properties
	“label” in User Interface
	“description” in User Interface

	Property “type” Details
	“options” Details
	“date” Details
	“composite” Details
	Properties in Policy Templates

	Define Action Groups in property.conf
	“action_groups” in User Interface
	Parameter Details for Action Groups

	Define Actions in property.conf
	“actions” in User Interface
	Parameter Details for Actions
	“params” Parameter Details
	“params” in User Interface
	“undo” in User Interface

	Actions in Policy Templates

	Map Scripts in property.conf
	Parameter Details for Scripts
	“scripts” Details

	Define Policy Templates in Connect
	Define Policy Template Group in property.conf
	“policy_template_group” in User Interface
	Parameter Details for Policy Template Group

	Define Policies in property.conf
	“policies” in User Interface
	Parameter Details for Policy Templates

	Define Icons in Connect

	Create Policy Template XML File for Connect
	Write Python Scripts for Connect
	About Python Scripting for Connect
	Libraries
	Library Files

	Python Debug Levels
	Python Log Location
	Script Not Found

	Test Script for Connect
	Response Objects
	Mandatory Fields
	Optional Fields
	Examples

	Polling Script for Connect
	Response Objects
	Mandatory Fields
	Mandatory Sub-Fields for Endpoints
	Optional Sub-Fields for Endpoints
	Examples

	Action Script for Connect
	Response Objects
	Mandatory Fields
	Optional Field for Cookie
	Optional Field for Properties
	Examples for Cookie
	Examples for Properties

	Property Resolve Script for Connect
	Response Objects
	Mandatory Fields
	Examples

	Authorization Script for Connect
	Response Objects
	Mandatory Fields

	Token-Based Authorization

	Use App Instance Cache in Connect Scripts
	Use Certificate Validation in Connect Scripts

	Use the Connect Web Service
	Access Swagger User Interface
	About the Connect APIs
	API Details
	Obtain JWT Token from Swagger
	Set Authorization in Swagger
	Curl Examples
	API Response Structure
	Successful Response
	Failed Response

	API Response Table
	Connect Web Service Logs
	Change Log Level

	Create a Connect App
	Contents of a Zip File
	File Size Maximum

	App Folder Paths
	Zip a Connect App Using a Mac

	Deploy an App with Connect
	Download a Connect App from GitHub
	App Download Issue

	Install Connect Plugin
	Ensure That the Connect Plugin Is Running
	Install/Uninstall Connect Web Service

	Connect Add-On Optional Module
	Without Connect Add-On Module Installed
	With Connect Add-On Module Installed

	Connect User Interface Details
	Connect Pane Details
	Columns in Connect Pane
	Buttons in Connect Pane
	Import an App
	Import a Signed App
	Update an App
	Edit an App
	Remove an App
	Start an App
	Stop an App
	Configure Authentication for Connect Web Service
	Apply Changes
	Upgrade an App

	Menu in Connect Pane
	Find Dialog Box
	Export Table Dialog Box

	System Description Dialog Box Details
	Columns in System Description Dialog Box
	Buttons in System Description Dialog Box
	Add a System Description
	Edit a System Description
	Remove a System Description
	Scenarios for Remove

	Test a System Description (Optional)
	Refresh App Features
	Import a System Description
	Scenarios for Import

	Export a System Description

	Menu in System Description Dialog Box

	Configure Policy Templates in Connect

	Appendix A: Sample Connect Files
	Sample system.conf File
	Sample property.conf File
	Sample Policy Template .xml File for Connect
	Sample Connect Script Files
	Sample Test Script for Connect
	Sample Polling Script for Connect
	Sample Resolve Script for Connect
	Sample App Instance Cache Script for Connect
	Sample Add a User Action Script for Connect
	Sample Delete a User Action Script for Connect
	Sample Authorization Script for Connect

	Appendix B: Swagger User Interface

