
1

Analyzing the
Security of BGP
Message Parsing
New Vulnerabilities
in Mature Code
Amine Amri
Stanislav Dashevskyi
Daniel dos Santos
Oussama Kerro

2

Analyzing the Security of BGP Message Parsing: New Vulnerabilities in Mature Code

Contents

1. Executive summary .. 3

2.	 Main	findings ... 3

 2.1. Why analyze BGP implementations? ... 3

 2.2.	Vulnerabilities	found ... 4

 2.3. Impact of the vulnerabilities... 5

3.	 Methodology ... 5

4.	 Technical	details	of	new	findings .. 8

 4.1. CVE-2022-43681 ... 10

 4.2. CVE-2022-40302 ... 11

 4.3. CVE-2022-40318 ... 12

5.	 Mitigation	recommendations.. 12

6. Conclusion ... 13

3

Analyzing the Security of BGP Message Parsing: New Vulnerabilities in Mature Code

1. Executive summary
This	report	discusses	an	often-overlooked	aspect	of	Border	Gateway	Protocol	(BGP)	security:	vulnerabilities	in	its	software	
implementations.	More	specifically,	vulnerabilities	in	BGP	message	parsing	that	could	be	exploited	by	attackers	to	achieve	a	
denial	of	service	(DoS)	condition	on	vulnerable	BGP	peers.

Routing	is	the	process	of	directing	data	packets	to	their	intended	destinations	on	a	network.	BGP	is	the	main	routing	protocol	for	
the	internet,	as	it	allows	individual	autonomous	systems	(ASes),	which	are	blocks	of	IPs	leased	to	an	organization	for	a	certain	
time	by	a	registrar,	to	exchange	routing	and	reachability	information.	When	BGP	fails,	an	AS	may	become	unreachable	because	
others	cannot	route	their	packets	there	and	the	unreachable	AS	becomes	cut	off	from	the	rest	of	the	Internet.	When	BGP	is	
abused	by	threat	actors,	network	traffic	may	be	rerouted	through	unintended	locations.

There	are	both	accidental	and	intentional	disruptions	of	routing	on	the	internet,	since	BGP	was	not	initially	designed	with	
security	in	mind.	Original	BGP	weaknesses	that	may	lead	to	major	incidents	and	internet	outages	have	been	known	for	a	long	
time.	For	example,	in	a	2018	incident,	traffic	for	Google	IP	addresses	was	routed	through	China	Telecom	for	more	than	an	hour.	
And	in	July	2022,	the	Russian	ISP	Rostelecom	announced	routes	for	parts	of	Apple’s	network,	resulting	in	connections	to	Apple’s	
services	potentially	being	redirected	through	Russia	for	more	than	12	hours.

Software	suites	implementing	BGP	are	relied	on	not	only	for	internet	routing	but	also	for	functions	such	as	internal	routing	in	
most	large	data	centers	as	well	as	MPLS	L3	VPNs.	Following	the	network	function	disaggregation	(NFD)	trend,	today	many	leading	
implementations are open source.

A	lot	of	(deserved)	attention	is	given	to	aspects	of	BGP	protocol	security	discussed	in	RFC4272,	which	can	be	mitigated	with	the	use	
of	RPKI	and	BGPsec.	However,	recent	BGP	incidents	show	that	it	might	take	only	a	malformed	packet	to	cause	a	large	disruption.

This	report	presents	a	quantitative	analysis	of	previously	known	vulnerabilities	in	both	open	and	closed-source	popular	BGP	
implementations,	as	well	as	a	new	analysis	of	seven	implementations	we	conducted	both	manually	and	automatically	using	a	
specially	developed	fuzzer	that	we	have	released	to	the	community.	There	are	two	main	findings	in	this	research:

 ▶ Some	implementations	process	parts	of	OPEN	messages	(e.g.,	decapsulating	optional	parameters),	before	validating	the	
BGP	ID	and	ASN	fields	of	the	originating	router.	This	means	that	only	TCP	spoofing	(instead	of	a	complete	takeover	of	a	
configured	peer)	is	required	to	inject	malformed	packets.

 ▶ We	found	three	new	vulnerabilities	in	a	leading	open-source	implementation,	FRRouting,	which	could	be	exploited	to	
achieve	denial	of	service	(DoS)	on	vulnerable	BGP	peers,	thus	dropping	all	BGP	sessions	and	routing	tables	and	rendering	
the	peer	unresponsive.	These	vulnerabilities	were	found	using	a	fuzzer	we	developed.

Our	research	shows	that	modern	BGP	implementations	still	have	vulnerabilities	that	can	be	abused	by	attackers.

2. Main findings
2.1. Why analyze BGP implementations?
There has been a lot of research on the (in)security	of	the	BGP	protocol	itself	and,	as	a	direct	consequence,	many	BGP	peers	now	
use	authentication	and	encryption	mechanisms,	such	as	Resource	Public	Key	Infrastructure	(RPKI),	although	recent	works	show	
that BGP is still not	secure	enough in many real-world	networks.

The	various	projects	that	implement	the	BGP	protocol	have	not	received	the	same	level	of	attention	in	the	security	community	as	
the	protocol	itself.	Various	implementations	of	these	mechanisms	may	be	vulnerable,	leaving	BGP	peers	wide	open	for	attacks.	
It	has	also	been	argued	that	attacking	BGP	peers	might	require	a	lot	of	resources	from	the	attackers’	side:	hijacking	portions	of	
the	internet	entails	successfully	breaching	a	trusted	relationship	(e.g.,	attackers	must	either	compromise	an	AS	or	become	one).	
However,	the	BGP	software	itself	might	be	vulnerable,	and	we	have	seen	many	such	vulnerabilities	disclosed	over	the	years.	The	
most	recent	systematic	work	we	found	about	security	testing	of	BGP	implementations	was	published	20	years	ago.

https://en.wikipedia.org/wiki/AS_7007_incident
https://www.wired.com/2008/08/revealed-the-in/
https://www.wired.com/2008/08/revealed-the-in/
https://arstechnica.com/information-technology/2018/11/major-bgp-mishap-takes-down-google-as-traffic-improperly-travels-to-china/
https://www.manrs.org/2022/07/for-12-hours-was-part-of-apple-engineerings-network-hijacked-by-russias-rostelecom/
https://datatracker.ietf.org/doc/html/rfc4272
https://www.zdnet.com/article/internet-experiment-goes-wrong-takes-down-a-bunch-of-linux-routers/
https://github.com/Forescout/bgp_boofuzzer/
https://datatracker.ietf.org/doc/html/rfc4272
https://eprints.soton.ac.uk/412811/1/EuroSnP.pdf
https://isbgpsafeyet.com/
https://www.blackhat.com/presentations/bh-usa-03/bh-us-03-convery-franz-v3.pdf

4

Analyzing the Security of BGP Message Parsing: New Vulnerabilities in Mature Code

Therefore,	we	focused	on	one	of	the	most	overlooked	aspects	of	information	security:	broken	software.	Given the maturity of
BGP implementations and the large corpus of patched vulnerabilities in them, are there still any “low-hanging fruit” to
be found?

2.2. Vulnerabilities found
We	analyzed	seven	popular	BGP	implementations,	three	open	source	(FRRouting,	BIRD,	OpenBGPd)	and	four	closed	source	
(Mikrotik	RouterOS,	Juniper	JunOS,	Cisco	IOS,	Arista	EOS),	using	both	manual	analysis	and	fuzzing,	as	described	in	Section	3.

We	found	three	new	vulnerabilities	in	the	latest	release	of	Free	Range	Routing	(FRRouting)	at	the	time	–	version 8.4,	released	on	
Nov	7,	2022.	The	vulnerabilities	are	summarized	in	Table 1	and	detailed	in	Section	4.

Table 1 – New CVEs

CVE ID
TESTED

PRODUCT
DESCRIPTION CVSSV3.1

POTENTIAL
IMPACT

CVE-2022-
40302

FRRouting
8.4

Out-of-bounds read when processing a malformed
BGP OPEN message with an Extended Optional
Parameters Length option.

6.5 DoS

CVE-2022-
40318

FRRouting
8.4

Out-of-bounds read when processing a malformed
BGP OPEN message with an Extended Optional
Parameters Length option. This is a different issue
from CVE-2022-40302.

6.5 DoS

CVE-2022-
43681

FRRouting
8.4

Out-of-bounds read when processing a malformed
BGP OPEN message that abruptly ends with the
option length octet (or the option length word, in case
of OPEN with extended option lengths message).

6.5 DoS

The	issues	were	reported	to	the	FRRouting	team	and	fixed	in	the	following	versions:

 ▶ CVE-2022-40302	and	CVE-2022-40318:	https://github.com/FRRouting/frr/pull/12043

 ▶ CVE-2022-43681:	https://github.com/FRRouting/frr/pull/12247

FRRouting	is	a	software	suite	that	implements	BGP	and	many	other	routing	protocols,	such	as	Open	Shortest	Path	First	(OSPF).	
It	was forked	from	another	open	source	project	called	Quagga	in	2016 by	developers	from	several	commercial	organizations.	
FRRouting	is	a	prime	example	of	NFD,	which	is	the	move	away	from	network	appliances	that	implement	all	networking	functions	
as	closed	applications	and	toward	open	routing	solutions	shared	by	many	vendors.	FRRouting	is	currently	used	in	the	networking	
solutions	of	several	major	vendors,	including	nVidia	Cumulus,	which	in	turn	is	adopted	by	large	organizations	such	as	PayPal,	
Yahoo,	Qualcomm	and	the	Dutch	National	Police;	DENT,	which	is	mainly	supported	by	Amazon;	and	SONiC,	which	is	mainly	
supported	by	Microsoft	and	used	in	some	Juniper	routers.

https://frrouting.org/
https://bird.network.cz/
https://www.openbgpd.org/
https://mikrotik.com/software
https://www.juniper.net/us/en/products/network-operating-system/junos-os.html
https://www.cisco.com/c/en/us/products/ios-nx-os-software/index.html
https://www.arista.com/en/products/eos
https://github.com/FRRouting/frr/releases/tag/frr-8.4
https://protect-us.mimecast.com/s/jIGKCn5V3vc3wN8zhZGyty?domain=github.com
https://github.com/FRRouting/frr/pull/12247
https://www.nextplatform.com/2020/10/26/frr-the-most-popular-network-router-youve-never-heard-of/
https://www.nvidia.com/en-us/networking/ethernet-switching/cumulus-linux/
https://www.nvidia.com/en-us/networking/ethernet-switching/case-studies/
https://dent.dev/
https://sonic-net.github.io/SONiC/
https://www.juniper.net/documentation/en_US/release-independent/nce/topics/concept/sonic-routing-stack-options.html

5

Analyzing the Security of BGP Message Parsing: New Vulnerabilities in Mature Code

2.3. Impact of the vulnerabilities
Attackers	may	leverage	any	of	the	three	vulnerabilities	we	discovered	to	achieve	a	DoS	on	a	vulnerable	BGP	peer,	thus	dropping	
all	BGP	sessions	and	routing	tables	and	rendering	the	peer	unresponsive	for	several	seconds	(the	BGP	daemon	will	automatically	
restart	after	a	timeout).	The	DoS	condition	may	be	prolonged	indefinitely	by	repeatedly	sending	malformed	packets.	
Two	of	these	issues	(CVE-2022-40302	and	CVE-2022-43681)	can	be	triggered	before	FRRouting	validates	BGP	Identifier	and	ASN	
fields.	While	FRRouting	only	allows	connections	between	configured	peers	by	default	(e.g.,	OPEN	messages	from	hosts	not	
present	in	the	config	files	will	not	be	accepted),	in	this	case	attackers	only	need	to	spoof	a	valid	IP	address	of	a	trusted	peer.	
Another	possibility	for	the	attacker	is	to	take	advantage	of	misconfigurations	or	attempt	to	compromise	a	legitimate	peer	by	
exploiting	other	vulnerabilities.	Similar	DoS	vulnerabilities	in	FRRouting	have	already	caused	notable	disruptions.

There	are	over	330,000	hosts	with	BGP	enabled	on	the	internet,	and	close	to	1,000	of	those	reply	to	unsolicited	BGP	OPEN	
messages.	Most	of	the	BGP	hosts	are	in	China	(close	to	100,000),	the	U.S.	(50,000)	and	the	UK	(16,000).	We	also	see	more	than	
200,000	hosts	running	Quagga	and	more	than	1,000	running	FRRouting	(not	all	of	them	with	BGP	enabled).	Again,	China	comes	
in	on	top	with	more	than	170,000	hosts,	followed	by	the	U.S.	with	15,000	and	Japan	with	close	to	4,000.

3. Methodology
We	first	reviewed	historical	vulnerabilities	in	various	BGP	implementations,	specifically	related	to	BGP	message	parsing.	We	
deliberately	excluded	other	kinds	of	issues	such	as	logical	flaws,	access	control	and	password	authentication.	We	searched	the	
NVD	and	counted	123	such	vulnerabilities:	the	figure	below	shows	their	distribution	by	project/software.

Note	that	the	“packet	analysis	software”	category	combines	the	tcpdump	and	Wireshark	projects	(one	of	the	vulnerabilities	dates	
back	to	when	Wireshark	was	known	as	Ethereal).	It	is	not	surprising	to	see	that	network	protocol	analyzers	may	be	implemented	
in	the	same	(flawed)	way	as	the	actual	software	that	implements	the	actual	protocols.	The	figure	also	combines	Quagga	Routing	
Suite	and	FRRouting	projects,	since	they	have	a	shared	codebase.

https://www.zdnet.com/article/bgp-spoofing-why-nothing-on-the-internet-is-actually-secure/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-3165
https://www.zdnet.com/article/internet-experiment-goes-wrong-takes-down-a-bunch-of-linux-routers/
https://www.shodan.io/search?query=product%3Abgp
https://www.shodan.io/search?query=%28bgp+port%3A%22179%22+%29+AND+NOT%28Error+Code%29
https://www.shodan.io/search?query=%28bgp+port%3A%22179%22+%29+AND+NOT%28Error+Code%29
https://www.shodan.io/search?query=Hello%2C+this+is+Quagga
https://www.shodan.io/search?query=frrouting
https://nvd.nist.gov/
https://www.tcpdump.org/
https://www.wireshark.org/
https://en.wikipedia.org/wiki/Wireshark
https://www.nongnu.org/quagga/
https://www.nongnu.org/quagga/
https://frrouting.org/

6

Analyzing the Security of BGP Message Parsing: New Vulnerabilities in Mature Code

We	noticed	that	nine	of	these	vulnerabilities	had	remote	code	execution	(RCE)	potential,	11	of	them	could	be	used	by	attackers	
to	leak	sensitive	information	and	all	of	them	could	be	used	to	trigger	a	variety	of	DoS	conditions	via	unhandled	assertions,	
memory	crashes	or	infinite	loops.	Most	of	the	RCE	vulnerabilities	were	identified	within	the	Quagga	project,	and	the	RCE	impact	
is	specified	as	potential.	(We	could	not	find	any	evidence	that	the	RCEs	are	indeed	exploitable).	However,	DoS	vulnerabilities	may	
also	be	very	valuable	for	attackers	that	aim	to	disrupt	BGP	routers	and	cause	major	networking	outages.

We	selected	several	implementations	based	on	their	popularity	and	the	availability	of	analysis	artifacts;	that	is,	open-	and	closed-
source	implementations	with	demo	versions	that	could	be	installed	on	a	virtual	machine.	We	list	these	implementations	below:

IMPLEMENTATION
OPEN

SOURCE?
REMARKS

FRRouting Yes

Free and open source routing protocol suite for Linux and Unix platforms.
FRRouting is a fork of the Quagga Routing Suite, and it implements multiple
routing protocols. We analyzed only the functionality related to BGP, both
manually and by fuzzing.

BIRD Yes
A dynamic IP routing daemon primarily targeted to Linux, FreeBSD and other
Unix-like systems. We analyzed only the functionality related to BGP, both
manually and by fuzzing.

OpenBGPD Yes
A free implementation of BGP, shipped as a part of OpenBSD Unix-like operating
system. We performed both manual code analysis and fuzzing.

Microtik RouterOS
v6.x and v7.x

No

An operating system for Microtik routers that includes a component
implementing the BGP protocol. We performed fuzzing as well as a lightweight
reverse engineering and manual analysis of the BGP-related binary for the latest
version 6.x and 7.x.

Juniper JunOS No
A FreeBSD-based network operating system used in Juniper Networks devices
(routers, switches). We performed fuzzing of a BGP component included in the
latest version of JunOS.

Cisco IOS No
A family of proprietary network operating systems used on several network
switches and routers manufactured by Cisco Systems. We performed fuzzing of
the BGP-related functionality.

Arista EOS No
A Linux-based network operating system that is the core of Arista cloud
networking solutions. We performed fuzzing of the BGP-related functionality.

https://frrouting.org/
https://www.nongnu.org/quagga/
https://bird.network.cz/
https://www.openbgpd.org/
https://www.openbsd.org/
https://mikrotik.com/software
https://mikrotik.com/software
https://www.juniper.net/us/en/products/network-operating-system/junos-os.html
https://www.cisco.com/c/en/us/products/ios-nx-os-software/index.html
https://www.arista.com/en/products/eos

7

Analyzing the Security of BGP Message Parsing: New Vulnerabilities in Mature Code

Some	of	the	selected	implementations	have	many	historical	vulnerabilities	(FRRouting,	JunOS,	Cisco)	while	others	have	very	few	
of	them	(BIRD,	OpenBGPD,	Arista,	Microtik).	We	decided	that	it	would	also	be	interesting	to	see	whether	Linus’s	law applies in
this	case.	In	other	words:

 ▶ Can	we	find	some	new	vulnerabilities	in	projects	with	rich	vulnerability	histories	where	it	is	believed	that	developers	have	
fixed	all	of	them	and	there	is	nothing	to	look	for?

 ▶ Would	low	vulnerability	counts	indicate	the	maturity	of	the	codebase	or	might	it	indicate	a	lack	of	security	audits?

Based	on	our	analysis	of	prior	vulnerabilities,	we	devised	the	following	checklist	for	manual	analysis	of:

 ▶ Relevant	network	packet	structures,	memory	allocation/deallocation	and	error	handling	(assertions,	watchdogs,	etc.).

 ▶ Functions	that	parse	incoming	OPEN,	UPDATE,	NOTIFICATION	and	ROUTE	REFRESH	messages	to	identify	erroneous	
bounds	checks	that	may	lead	to	crashes,	infinite	loops	or	assertion	failures.

 ▶ Code	that	handles	various	length	fields	(BGP	header	length,	optional	parameters,	capabilities,	path	attributes,	route	
updates/withdrawals,	etc.)

 ▶ The	BGP	state	machine	(e.g.,	whether	a	peer	would	process	unsolicited	or	out-of-order	OPEN,	UPDATE	and	other	
messages).

We	also	observed	how	these	implementations	react	to	attempts	to	establish	a	BGP	session	with	non-configured	peers.	As	was	
noted	in	previous research,	this	behavior	is	not	uniform	across	all	implementations,	although	four	of	the	seven	implementations	
analyzed	behaved	the	same.

IMPLEMENTATION BEHAVIOR WHEN A NON-CONFIGURED PEER TRIES TO ESTABLISH A BGP SESSION

FRRouting
Proceeds with a TCP handshake, terminates the TCP session (a TCP Reset packet) after an OPEN
packet is received. Performs some processing of OPEN messages before validating the BGP ID
and ASN fields.

BIRD
Proceeds with a TCP handshake, terminates the TCP session (a TCP Reset packet) after an OPEN
packet is received.

OpenBGPD
Proceeds with a TCP handshake, terminates the TCP session (a TCP Reset packet) after an OPEN
packet is received.

Microtik RouterOS
Proceeds with a TCP handshake, terminates the TCP session (a TCP Reset packet) after an OPEN
packet is received.

Juniper JunOS
Proceeds with a TCP handshake. Sends back an OPEN message, sends back a Cease
NOTIFICATION message with the subcode 5 (Connection Rejected).

Cisco IOS Does not allow to establish a TCP connection (TCP handshake fails).

Arista EOS
Proceeds with a TCP handshake, terminates the TCP session (a TCP Reset packet) after an OPEN
packet is received.

https://en.wikipedia.org/wiki/Linus%27s_law
https://www.blackhat.com/presentations/bh-usa-03/bh-us-03-convery-franz-v3.pdf
https://frrouting.org/
https://bird.network.cz/
https://www.openbgpd.org/
https://mikrotik.com/software
https://www.juniper.net/us/en/products/network-operating-system/junos-os.html
https://www.cisco.com/c/en/us/products/ios-nx-os-software/index.html
https://www.arista.com/en/products/eos

8

Analyzing the Security of BGP Message Parsing: New Vulnerabilities in Mature Code

Six	out	of	seven	implementations	proceed	with	the	TCP	handshake	before	checking	whether	an	incoming	OPEN	message	is	
sent	from	a	pre-configured	peer.	This	is	because	the	BGP	daemon	process	is	running	in	user	mode	(i.e.,	connection	filtering	not	
happening	on	the	kernel	level),	unlike	with	Cisco	IOS,	where	it	seems	that	the	filtering	happens	on	the	kernel	level.	We	also	found	
that	FRRouting	begins	to	process	OPEN	messages	(e.g.,	decapsulating	optional	parameters)	before	it	gets	a	chance	to	verify	the	
BGP	Identifier	and	ASN	fields	of	the	originating	router.	At	a	glance,	the	most	“permissive”	implementation	is	Juniper	JunOS,	as	it	
replies	with	BGP	messages	identifying	itself.	

No	implementation	allowed	us	to	establish	a	BGP	session	from	a	non-configured	peer	–	this means that TCP spoofing (or
a complete takeover of a configured peer) is required to inject malformed packets.	Note	that	we	tested	the	behavior	
inherent	to	the	default	configurations,	so	custom	(mis-)configurations	might	allow	the	attackers	to	peer	with	BGP	instances	
without	any	restrictions.	

While	performing	manual	analysis,	we	did	not	focus	on	subtle	performance	issues	such	as	excessive	CPU	consumption	and	
memory	leaks,	as	it	would	be	extremely	difficult	to	identify	them	manually.	As	we	learned	with	Project Memoria,	even	though	
implementations	may	vary	widely	with	respect	to	resource	management,	their	packet	parsing	functions	can	still	be	quite	similar	
and	exhibit	similar	bugs

Finally,	we	realized	that	BGP	is	a	complex	protocol	and	it	may	prove	very	difficult	to	fully	analyze	the	parsers	even	in	open-source	
implementations	(let	alone	to	reverse-engineer	and	analyze	the	closed-source	ones).	Since	we	could	not	find	an	open-source	off-
the-shelf	BGP	fuzzer,	we	implemented	a	lightweight	one	based	on	the	BooFuzz	framework.	For	each	of	the	BGP	messages	that	
may	be	processed	by	a	peer	(OPEN,	UPDATE,	NOTIFICATION,	ROUTE	REFRESH),	we	created	a	stateful	fuzzer	that	will:	(1)	establish	
a	BGP	session	with	a	peer	(except	for	OPEN	messages	that	initiate	these	sessions);	(2)	send	a	malformed	BGP	message	with	a	
specific	payload	(we	had	a	number	of	test	cases	based	on	the	manual	analysis	checklist	and	past	vulnerabilities,	as	well	as	test	
cases	with	random	fuzzloads);	and	(3)	test	the	target	for	crashes	via	a	custom	RPC	monitor	(we	used	the	corresponding	base	
class	of	BooFuzz).

4. Technical details of new findings
We	only	performed	manual	analysis	on	the	implementations	with	open-source	code	bases	(FRRouting,	BIRD	and	OpenBGPD),	we	
also	looked	at	the	relevant	binary	artefacts	from	the	two	major	versions	of	Microtik’s	RouterOS	(versions	6	and	7).	

After	completing	the	manual	analysis	phase	with	no	results,	we	ran	our	fuzzer	against	each	of	the	selected	implementations,	
with	a	time	limit	of	five	hours	per	test	case.	Almost	immediately,	we	could	identify	two	closely	related	issues	in	FRRouting.	We	
could	also	identify	a	third	similar	issue	by	doing	some	manual	analysis	of	a	code	fragment	reused	within	the	same	project’s	
codebase.	These	issues	are	as	follows:

CVE ID DESCRIPTION

CVE-2022-40302
Out-of-bounds read when processing a malformed BGP OPEN message with an Extended Optional
Parameters Length option.

CVE-2022-40318
Out-of-bounds read when processing a malformed BGP OPEN message with an Extended Optional
Parameters Length option. This is a different issue from CVE-2022-40302.

CVE-2022-43681
Out-of-bounds read when processing a malformed BGP OPEN message that abruptly ends with
the option length octet (or the option length word, in case of OPEN with extended option lengths
message).

https://www.forescout.com/research-labs/project-memoria/
https://github.com/jtpereyda/boofuzz

9

Analyzing the Security of BGP Message Parsing: New Vulnerabilities in Mature Code

These	vulnerabilities	are	related	to	the	Optional	Parameters	Length	field	of	the	BGP	OPEN	messages.	The	main	root	cause	is	
the	same	vulnerable	code	pattern	copied	into	several	functions	related	to	different	stages	of	parsing	OPEN	messages.	All	three	
issues,	when	triggered,	allow	to	achieve	a	DoS	condition	via	three	different	code	paths.	Two	out	of	three	issues	(CVE-2022-40302	
and	CVE-2022-43681)	can	be	triggered	before	FRRouting	validates	BGP	Identifier	and	ASN	fields,	making	it	easier	for	potential	
attackers	to	spoof	a	configured	originating	router	–	in	this	case	they	only	need	to	spoof	the	originating	IP	address.	

We	disclosed	our	findings	to	the	developers	of	the	FRRouting	project	and	they	fixed	all	the	issues	shortly	thereafter.

The	original	RFC 4271	that	details	the	latest	version	of	the	BGP	protocol	mentions	the	Optional	Parameters	Length	field	that	
sets	the	length	of	optional	parameters	in	OPEN	messages	(the	length	of	this	field	is	fixed	at	1	octet).	If	an	OPEN	message	does	
not	contain	any	optional	parameters,	the	value	of	this	field	is	set	to	0.	The	same	RFC	document	mentions	that	each	optional	
parameter	has	a	dedicated	length	field	as	well,	which	size	is	fixed	at	1	octet.

RFC 9072	introduced	extended	option	lengths.	If	the	Optional	Parameters	Length	field	is	set	to	a	special	value	of	0xff,	the	length	
fields	of	optional	parameters	will	be	extended	from	one	octet	to	a	word	(two	octets).	In	case	of	extended	option	lengths,	the	
rest	of	the	OPEN	message	will	look	as	follows:	following	the	Optional	Parameter	Length	field	set	to	0xff,	there	will	be	the	Non-
extended	Optional	Parameter	Type	field	(one	octet)	that	must	be	also	set	to	0xff;	next,	there	will	be	the	word-wide	Extended	
Optional	Parameters	Length	field,	which	must	contain	the	total	length	of	extended	optional	parameters,	followed	by	the	actual	
optional	parameters.	Each	of	the	optional	parameters	is	expected	to	have	a	word-wide	length	field	as	well.

FRRouting	(unlike	some	implementations	such	as	both	versions	of	the	BGP	component	from	Microtik	RouterOS	that	we	
analyzed)	supports	RFC	9072	and	processes	OPEN	messages	with	both	regular	and	extended	lengths	for	optional	parameters.	
From	previous	research,	we	know	that	because	it’s	tricky	to	implement,	the	functionality	that	processes	variable-length	fields	
of	network	packets	is	a	common	source	of	bugs	and	security	vulnerabilities.	Below,	we	present	some	technical	details	about	
our	findings.

https://www.rfc-editor.org/rfc/rfc4271
https://www.rfc-editor.org/rfc/rfc9072.txt

10

Analyzing the Security of BGP Message Parsing: New Vulnerabilities in Mature Code

4.1. CVE-2022-43681
The	root	cause	of	this	issue	is	insufficient	bounds	checks	of	extended	option	length	octets	in	OPEN	messages.	The	following	code	
snippet	illustrates	the	vulnerability:

At	line	1,	the	bgp_open_receive()	function	will	read	the	option	length	octet	(the	optlen	variable).	If	optlen equals to 0xff	(defined	as	
BGP_OPEN_NON_EXT_OPT_LEN	 constant),	 the	 function	 will	 proceed	 reading	 the	 next	 octet	 (opttype)	 by	 calling	 the	 stream_getc()
function	at	line	8	–	this	function	reads	the	next	octet	value	from	a	raw	packet	stream.	If	opttype equals to 0xff	as	well,	it	is	considered	
that	the	OPEN	packet	contains	extended	optional	parameters	(as	per	RFC	9072).	In	this	case,	a	next	word	will	be	read	from	the	raw	
packet	stream	(stream_getw(),	line	9).	This	word	corresponds	to	the	Extended Optional Parameters Length	field.	After	these	fields	are	
read,	the	code	will	proceed	with	parsing	optional	parameters.

There	is	an	issue	in	this	code	that	leads	to	out-of-bound	reads:	when	a	malformed	BGP	OPEN	message	that	ends	with	just	the	
extended	option	length	field	(0xff)	 is	received,	the	call	to	stream_getc()	on	line	8	will	read	one	octet	beyond	raw	packet	stream.	
This	out-of-bounds	read	will	trigger	an	assertion	that	will	throw	a	SIGABRT	signal,	causing	the	bgpd	daemon	of	FRRouting	to	be	
restarted,	resulting	in	a	DoS	condition.

The	same	effect	can	be	achieved	by	sending	a	malformed	BGP	OPEN	packet	that	ends	with	the	two	octets	Non-Extended Option
Length	and	Non-Extended Option Type (both	should	be	set	to	0xff).	In	this	case,	the	code	will	read	a	word	(two	octets)	out	of	
bounds	when	calling	the	stream_getw() function at line 9.

11

Analyzing the Security of BGP Message Parsing: New Vulnerabilities in Mature Code

4.2. CVE-2022-40302
The	root	cause	of	this	issue	is	improper	bounds	check	for	the	OPEN	message	packet	when	reading	the	AS4	capability	(4-byte	AS	
Numbers,	as	per	RFC 6793).	The	offending	function	is	called	peek_for_as4_capability(),	which	is	called	before	processing	all	other	
options.	Its	purpose	is	to	iterate	over	all	present	options	and	to	find	and	parse	the	AS4	capability:

The	bounds	check	condition	at	 line	12	checks	for	two	bytes	 in	advance,	against	the	option	 length	received	(the	variable	end is
initialized	at	line	2).	However,	if	the	received	OPEN	message	has	optional	parameters	with	extended	length	(as	per	RFC	9072),	the	
function	would	read	three	bytes	from	the	raw	packet	stream	instead	of	just	two,	as	anticipated	by	the	bounds	check	condition	(i.e.,	
line	16	instead	of	line	17	will	be	executed).	

We	could	then	craft	such	malformed	OPEN	packet	that	passes	the	check	at	line	12,	and	achieves	an	out-of-bounds	read	at	line	
16.	One	additional	constraint	here	is	that	the	optional	parameters	should	not	contain	the	Capabilities option of value 0x02	(line	
18)	–	in	this	way	we	ensure	that	the	code	iterates	in	the	“while”	loop	triggering	the	out-of-bounds	read	on	one	of	its	iterations.

https://www.rfc-editor.org/rfc/rfc6793.txt

12

Analyzing the Security of BGP Message Parsing: New Vulnerabilities in Mature Code

4.3. CVE-2022-40318
This	vulnerability	is	similar	to	CVE-2022-40302;	however,	it	was	a	bit	more	difficult	to	find	a	payload	that	will	trigger	it.	The	challenge	
here	was	to	construct	a	malformed	OPEN	message	that	would	successfully	go	through	the	peek_for_as4_capability()	function	without	
triggering	an	issue	there,	but	that	would	trigger	a	very	similar	issue	in	the	bgp_open_option_parse()	function	that	will	be	called	after.	

We	spotted	this	issue	after	looking	at	the	usages	of	the	stream_getw()	function	and	finding	a	very	similar	code	pattern	to	the	one	
in peek_for_as4_capability().	The	vulnerable	code	fragment	of	the	bgp_open_option_parse()	function	is	shown	below:

If	you	look	closely	at	the	code,	you	can	spot	a	very	similar	pattern	to	the	vulnerable	code	of	CVE-2022-40302:	there	is	a	bounds	
check	(line	6)	that	accounts	for	only	two	octets	that	should	be	present	in	the	packet	with	the	regular	option	length.	However,	
the	bounds	check	fails	to	account	for	extended	option	lengths,	for	which	there	must	be	three	octets	in	total.	The	issue	will	be	
triggered	in	the	same	way	at	line	16	while	calling	the	stream_getw() function.

5. Mitigation recommendations
Since	BGP	is	such	an	integral	part	of	the	internet,	there	are	several	guidelines	on	how	to	secure	it,	such	as	those	from	the	
Internet	Society,	RIPE	NCC,	NIST	and	the	NSA.	However,	those	guidelines	tend	to	focus	only	on	the	known	issues	with	BGP	
insecurity	and	how	to	deploy	RPKI.	

It	is	important	to	note	that	BGP	is	found	in	unexpected	places	beyond	ISPs	and	internet	exchanges	(IXs).	For	instance,	BGP	is	
commonly	used	internally	to	route	the	traffic	in	large	data	centers	and	BGP	extensions,	such	as	MP-BGP,	are	widely	deployed	for	
MPLS	L3	VPNs.	Therefore,	organizations	should	not	rely	only	on	their	ISPs	to	handle	BGP	security.

https://www.internetsociety.org/deploy360/securing-bgp/
https://academy.ripe.net/enrol/index.php?id=15
https://csrc.nist.gov/publications/detail/sp/1800-14/final
https://www.nsa.gov/portals/75/documents/what-we-do/cybersecurity/professional-resources/ctr-guide-to-border-gateway-protocol-best-practices.pdf
https://research.facebook.com/publications/running-bgp-in-data-centers-at-scale/
https://en.wikipedia.org/wiki/Multiprotocol_BGP

13

Analyzing the Security of BGP Message Parsing: New Vulnerabilities in Mature Code

Forescout Technologies, Inc.

Toll-Free (US) 1-866-377-8771
Tel (Intl) +1-408-213-3191
Support +1-708-237-6591

Learn more at Forescout.com

©2023 Forescout Technologies, Inc. All rights reserved. Forescout Technologies,
Inc. is a Delaware corporation. A list of our trademarks and patents is available at
www.forescout.com/company/legal/intellectual-property-patents-trademarks.
Other brands, products, or service names may be trademarks or service marks of
their respective owners. Version 01_03

Also,	because	of	the	supply	chain	effect	we	have	seen	in	past research,	vulnerabilities	on	open-source	components	tend	to	
spread	widely.	The	new	issues	CVE-2022-40302	and	CVE-2022-40318,	for	instance,	clearly	show	how	the	same	vulnerable	code	
may	be	present	in	multiple	places	of	a	code	base	and	serve	as	a	root	cause	for	several	vulnerabilities.	Similar	(or	the	same)	code	
could	be	present	in	other	projects	and	affect	several	products	using	FRRouting	or	one	of	the	networking	operating	systems	that	
rely	on	it,	such	as	Cumulus,	SONiC	and	DENT,	mentioned	above.

To	mitigate	the	risk	of	vulnerable	BGP	implementations,	such	as	the	FRRouting	issues	we	found,	the	best	recommendation	is	to	
patch network infrastructure devices as often as possible.	To	do	so,	must	first	have	an	updated	asset	inventory	that	keeps	
track	of	all	the	networking	devices	in	your	organization	and	the	versions	of	software	running	on	them.	This	is	much	easier	to	
achieve	with	software	that	provides	granular	visibility	for	every	device	in	the	network.

6. Conclusion
After	reviewing	and	testing	the	selected	implementations,	we	can	assume	that	they	are	quite	robust	and	have	good	protective	
measures	against	malformed	packets.	This	is	not	particularly	surprising,	considering	that	these	are	mature	and	actively	
developed	projects/products	with	many	contributors.	Nevertheless,	we	were	surprised	by	our	findings	in	the	FRRouting	project:	
while	these	are	not	major	vulnerabilities,	it	is	interesting	to	see	evidence	that	BGP	message	parsing	issues	can	still	be	found	in	
major	projects	with	a	good	history	of	security	patches.	The	fact	that	FRRouting	provides	wide	support	for	fuzzing	its	own	code
suggests	that	Linus’s	law	may	not	always	hold	and	a	few	“shallow”	bugs	may	still	slip	through	the	cracks.	On	a	positive	note,	the	
issues	were	fixed	by	the	FRRouting	team	very	fast,	which	again	shows	the	project	has	a	high	level	of	security	maturity.

While	all	the	BGP	implementations	we	tested	are	quite	resilient	against	malformed	packets,	it	may	be	possible	that	we	
overlooked	some	bugs.	As	noted	by	Cavedon	et	al.,	“routers	waiting	and	replying	to	OPEN	messages	might	be	vulnerable	to	
some	kind	of	attack.”	Less	mature	implementations	may	still	contain	BGP	message	parsing	issues.

It	would	also	be	interesting	to	analyze	logical	flaws	within	the	protocol	itself,	such	as	BGP	state	machine	issues	that	lead	to	
undefined/erroneous	behavior.	RFC 4272	has	an	extensive	list	of	logical	flaws	that	may	be	present	in	various	implementations.	
There	is	also	a	lot	more	work	required	to	develop	a	scalable	BGP	fuzzer	that	considers	not	only	malformed	messages	but	also	
the state machine of the BGP protocol.

	A	final	worthwhile	endeavor	would	be	an	audit	for	bugs	within	peer	authentication	mechanisms	built	on	top	of	the	BGP	
protocol,	such	as	the	following	flaws	in	RPKI	and	MD5	authentication:	CVE-2020-12831,	CVE-2021-0281,	CVE-2022-20694	and	
CVE-2020-3165.	These	issues	seem	to	have	surfaced	only	recently,	which	may	indicate	that	a	wider	set	of	implementations	might	
suffer	from	similar	flaws.

http://www.forescout.com
http://www.forescout.com/company/legal/intellectual-property-patents-trademarks
https://www.forescout.com/research-labs/amnesia33/
http://docs.frrouting.org/projects/dev-guide/en/latest/fuzzing.html
https://link.springer.com/content/pdf/10.1007/978-3-642-19228-9_8.pdf
https://www.rfc-editor.org/rfc/rfc4272.txt
https://nvd.nist.gov/vuln/detail/CVE-2020-12831
https://nvd.nist.gov/vuln/detail/CVE-2021-0281
https://nvd.nist.gov/vuln/detail/CVE-2022-20694
https://nvd.nist.gov/vuln/detail/CVE-2020-3165

