Table of Contents

About the Wireless Plugin ... 4
 Wireless Network Access Device Terminology ... 6
 How It Works .. 6
 About WLAN Controller/Lightweight Access Points 7
 Supported Wireless Integrations ... 8
 Required WLAN Device Configuration .. 8
 IPv6 Support .. 8
 Failover Clustering Support .. 9
 Appliance Management Processing Load .. 9
 What to Do .. 10

Hardware and Software Requirements ... 10
 CounterACT Requirements .. 10
 Networking Requirements .. 10
 WLAN Device – Read/Write Settings ... 11

Plugin Configuration .. 12
 Configuration .. 12
 WLAN Device Management Configuration .. 13
 Enable CounterACT RADIUS-based Management of Wireless Clients 20
 802.1X Integration ... 23
 Control Plugin Query about Lightweight Access Points 25
 Verify That the Plugin Is Running .. 25
 Plugin Testing ... 25
 Troubleshooting .. 26
 Duplicate a Configuration ... 27
 Import and Export Configurations ... 28
 Wireless Pane Information and Failover Clustering 29
 Scheduled Component Backup of Wireless Plugin Configuration 30
 Change Connecting Appliance of WLAN Device 30
 Centralized Web Authentication with Cisco Wireless LAN Controllers 31

Display Wireless Detection Information at the Console 31

Create Policies to Handle Detected Wireless Clients 34
 Wireless Client Properties .. 35
 Wireless SNMP Trap Criteria ... 38
 WLAN Device Properties ... 38
 Wireless Admission Events ... 39
 Policy Template: VR WPA2 KRACK .. 39
 WLAN Actions ... 40
About the Wireless Plugin

The Wireless Plugin is a component of the ForeScout CounterACT® Network Module. See Network Module Information for details about the module.

The plugin is designed to provide CounterACT network access control (NAC) capabilities for 802.11 WLAN controllers and autonomous access points.

In this document, the term Wireless LAN (WLAN) device refers to either WLAN controllers or autonomous access points or both types of wireless network access management devices.

Wireless Plugin IP address range entries enable the CounterACT RADIUS server to provide RADIUS-based management of wireless clients attempting to connect to the network via WLAN devices of any vendor.

Wireless Plugin-provided NAC capabilities include:

- Manage WLAN devices deployed in a network. The plugin can resolve WLAN device properties that classify the various types of WLAN devices in the network – controllers, autonomous access points and lightweight access points.

- Detect lightweight access points that are being managed by a plugin-managed WLAN controller. Information about detected lightweight access points is reported in the Console.

- Display information about wireless clients connected to your network. For example:
 - Wireless client IP address and MAC address.
 - The wireless network name (SSID) to which the wireless client is connected.
 - The name of the wireless access point to which the wireless client is connected.
 - The wireless client's authentication method, for example, 802.1X, WPA, none.
 - The IP address of plugin-managed WLAN devices.
- Assign wireless clients a controller-defined role.
- Block wireless clients from connecting to the organizational network.
Wireless Network Access Device Terminology

The following table describes wireless devices referred to in this document:

<table>
<thead>
<tr>
<th>Term</th>
<th>Short Name/Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autonomous Access Point</td>
<td>• Autonomous AP</td>
<td>The autonomous access point is an access point device that supports standalone network configurations, where all configuration settings are maintained locally on the device. Configure the Wireless Plugin to manage autonomous access points.</td>
</tr>
<tr>
<td></td>
<td>• AAP</td>
<td></td>
</tr>
<tr>
<td>Light Weight Access Point</td>
<td>• Lightweight AP</td>
<td>The lightweight access point is a device that is managed by a WLAN controller, and cannot act independently of the controller. Lightweight APs have no configuration until they associate with a controller. LAPs are zero touch deployed and are not individually configured. The Wireless Plugin learns of and reports information about lightweight access points that are managed by a plugin-managed WLAN controller.</td>
</tr>
<tr>
<td></td>
<td>• LAP</td>
<td></td>
</tr>
<tr>
<td>Wireless LAN Controller</td>
<td>• WLAN controller</td>
<td>A device that manages one or more lightweight access point in the WLAN. The WLAN controller performs all the traditional roles of an AP, such as association or authentication of wireless clients. The WLAN controller provides all the configuration parameters and firmware that the lightweight access point needs in the registration process. Configure the Wireless Plugin to manage WLAN controllers.</td>
</tr>
<tr>
<td></td>
<td>• Controller</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• WLC</td>
<td></td>
</tr>
<tr>
<td>Wireless Client</td>
<td>• Wireless client</td>
<td>An endpoint that attempts to connect to or is currently connected to a WLAN device or a lightweight AP.</td>
</tr>
</tbody>
</table>

How It Works

The Wireless Plugin polls WLAN devices for information about connected wireless clients. The information can be used to construct policy rules.

CounterACT can instruct the WLAN device to carry out a Block MAC command, for example when wireless clients are not compliant with CounterACT policies. Blocking is based on the wireless client’s MAC address. Detected MAC addresses are blocked on all wireless controllers that are configured to communicate with the plugin.
Blocked wireless clients can be viewed at controllers as well as at the Console.

About WLAN Controller/Lightweight Access Points

WLAN Controllers are enterprise-class wireless switching platforms that manage 802.11 access points. The controller acts as a central management platform for the connected lightweight access points and wireless clients. Each controller operates either a single wireless local area network (WLAN) or multiple WLANs. Each WLAN is identified by a unique Service Set Identifier (SSID). An SSID identifies a specific WLAN that is available for access by wireless clients.

The Wireless Plugin detects and reports information about the lightweight APs of the following supported vendors:

- Aruba
- Cisco
- Ruckus
Supported Wireless Integrations

For detailed information about WLAN device vendor models and operating system versions that are validated for Wireless Plugin management, refer to the WLAN INTEGRATIONS section in the CounterACT Network Devices Compatibility Matrix. You can access this matrix in one of the following locations, depending on the licensing mode your deployment is using:

- **Per-Appliance Licensing Mode** - [Product Updates Portal](#)
- **Centralized Licensing Mode** - [Customer Portal](#), Documentation Page.

See [Additional CounterACT Documentation](#) (Identifying Your Licensing Mode in the Console) to learn which licensing mode your deployment is using.

Required WLAN Device Configuration

In addition to configuring the Wireless Plugin to manage supported vendor WLAN devices, the WLAN devices themselves must be properly configured to interoperate with CounterACT. For information about the necessary WLAN device configurations, refer to the following CounterACT documents:

- If your deployment is using Centralized Licensing Mode, you can access these documents from the [Customer Portal](#), Documentation Page. See [Additional CounterACT Documentation](#) (Identifying Your Licensing Mode in the Console) to learn which licensing mode your deployment is using.

- AeroHive: [ForeScout CounterACT® Wireless Plugin Integration with AeroHive Access Points Configuration Guide](#)
- Aruba Networks: [ForeScout CounterACT® Wireless Plugin Integration with Aruba Controllers Configuration Guide](#)
- Cisco: [ForeScout CounterACT® Wireless Plugin Integration with Cisco Controllers Configuration Guide](#)
- Meru Networks: [ForeScout CounterACT® Wireless Plugin Integration with Meru Wireless Controllers Configuration Guide](#)
- Motorola: [ForeScout CounterACT® Wireless Plugin Integration with Motorola Controllers Configuration Guide](#)
- Xirrus: [ForeScout CounterACT® Wireless Plugin Integration with Xirrus Wireless Controllers Configuration Guide](#)

IPv6 Support

The Wireless Plugin provides IPv6-related support for the managed WLAN devices of all supported wireless vendors. For the list of supported wireless vendors, refer to the WLAN INTEGRATIONS section in the CounterACT Network Devices Compatibility Matrix. You can access this matrix in one of the following locations, depending on the licensing mode your deployment is using:

- **Per-Appliance Licensing Mode** - [Product Updates Portal](#)
- **Centralized Licensing Mode** - [Customer Portal](#), Documentation Page.
Plugin provided IPv6-related support is as follows:

- The plugin can **manage both dual-stack WLAN devices** and **IPv6-only WLAN devices**, as WLAN device management is accomplished using either a WLAN device IPv4 address or a WLAN device IPv6 address.

- The plugin reports IPv6 address information [IPv6 addresses and IPv6 link-local address] of IPv6 endpoints that are connected to Aruba, Cisco and Cisco Aironet WLAN devices. This support is provided for both **IPv6-only endpoints** and **dual-stack endpoints**.

- Plugin-provided WLAN actions can be applied on connected IPv6-only endpoints and connected dual-stack endpoints.

For information about overall CounterACT IPv6-related support, refer to the CounterACT 8.0 Release Notes. For information about required configurations for CounterACT handling of IPv6 endpoints, refer to the Work with IPv6 Addressable Endpoints How-to Guide. See Additional CounterACT Documentation for information on how to access these guides.

Failover Clustering Support

The Wireless Plugin supports CounterACT’s Failover Clustering functionality. Failover Clustering provides for the continued, operational availability of the CounterACT service, in the event of Appliance failure (one Appliance, many Appliances or an entire data center of Appliances). Both endpoints handled by and WLAN devices managed by the failed Appliance(s) are automatically transferred to designated Appliances having available capacity. Refer to the ForeScout CounterACT Resiliency Solutions User Guide for detailed information about this feature. See Additional CounterACT Documentation for information on how to access this guide.

In support of CounterACT Failover Clustering, the Wireless Plugin provides continuity of WLAN device handling, including applied WLAN actions, in the event of Appliance failover to a recipient Appliance and subsequent failback to the reconnected original Appliance.

For details about Wireless Plugin processing that is affected due to Failover Clustering, see the section Wireless Pane Information and Failover Clustering.

Appliance Management Processing Load

Deploying Wireless Plugin operation in your CounterACT Appliances requires you to be aware of the management processing load that is required of these Appliances and, if necessary, adjust that processing load among Appliances.

For the recommended maximum number of WLAN devices that an Appliance can manage, refer to the Appliance Specifications. Use the provided information to plan for the use of Wireless Plugin operation in CounterACT Appliances.
What to Do

To successfully use the Wireless Plugin perform all the following tasks:

1. Verify that you have met hardware and software requirements. See Hardware and Software Requirements.
2. Configure the plugin. See Plugin Configuration.
3. Set up your WLAN device to communicate with CounterACT. See WLAN Device – Read/Write Settings.
4. Verify That the Plugin Is Running.
5. Test the plugin. See Plugin Testing.
6. Set up CounterACT to view wireless client detections. See Display Wireless Detection Information at the Console.
7. Create CounterACT policies that manage wireless clients. See Create Policies to Handle Detected Wireless Clients.

Hardware and Software Requirements

This section describes software and hardware requirements.

- A basic understanding of CounterACT functionally and policy features is required of readers of this document.
- For the read/write permissions required by the Wireless Plugin to interoperate with managed wireless devices, see WLAN Device – Read/Write Settings.

CounterACT Requirements

The plugin requires the following CounterACT releases and other CounterACT components:

- CounterACT 8.0.
- In order for Wireless Plugin IP address range to enable CounterACT RADIUS-based management of wireless clients, the Authentication Module version 1.0.1 with the RADIUS Plugin running is required.
- An active Maintenance Contract for CounterACT devices is required.

Networking Requirements

Network connectivity between the CounterACT Appliance and a WLAN device is required for plugin management of the WLAN device.
WLAN Device – Read/Write Settings

For Wireless Plugin management of a WLAN device, configuration of the following read/write settings in the WLAN device is required:

<table>
<thead>
<tr>
<th>WLAN Device</th>
<th>Read/Write Settings Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>AeroHive Access Point</td>
<td>Plugin management of the WLAN device requires:</td>
</tr>
<tr>
<td></td>
<td>- SNMP read access to perform queries</td>
</tr>
<tr>
<td></td>
<td>- SSH or Telnet management (write) access to apply the WLAN Block action on wireless clients</td>
</tr>
<tr>
<td>Aruba Networks Controller</td>
<td>Plugin management of the WLAN device requires:</td>
</tr>
<tr>
<td></td>
<td>- Either SNMP or CLI (SSH or Telnet) read access to perform queries</td>
</tr>
<tr>
<td></td>
<td>- SSH or Telnet management (write) access to apply the WLAN management actions (WLAN Block and WLAN Role) on wireless clients</td>
</tr>
<tr>
<td>Cisco Controller</td>
<td>Plugin management of the WLAN device requires:</td>
</tr>
<tr>
<td></td>
<td>- SNMP read access to perform queries</td>
</tr>
<tr>
<td></td>
<td>- For Cisco controllers that run the IOS-XE operating system:</td>
</tr>
<tr>
<td></td>
<td>- CLI (SSH or Telnet) privilege mode write access to apply the WLAN Block action on wireless clients.</td>
</tr>
<tr>
<td></td>
<td>- For all other Cisco controllers:</td>
</tr>
<tr>
<td></td>
<td>- SNMP write access to apply the WLAN management actions (WLAN Block and WLAN Role) on wireless clients</td>
</tr>
<tr>
<td>Cisco Aironet Access Point</td>
<td>Plugin management of the WLAN device requires:</td>
</tr>
<tr>
<td></td>
<td>- Either SNMP or CLI (SSH or Telnet) read access to perform queries.</td>
</tr>
<tr>
<td></td>
<td>- Plugin CLI read access is required for the plugin to obtain/report the IPv6 address information of connected IPv6 endpoints</td>
</tr>
<tr>
<td></td>
<td>- SSH or Telnet management (write) access to apply the WLAN Block action on wireless clients.</td>
</tr>
<tr>
<td>Meru Networks Controller</td>
<td>Plugin management of the WLAN device requires:</td>
</tr>
<tr>
<td></td>
<td>- SNMP read access to perform queries</td>
</tr>
<tr>
<td></td>
<td>- SSH or Telnet management (write) access to apply the WLAN Block action on wireless clients.</td>
</tr>
<tr>
<td>Motorola Controller</td>
<td>Plugin management of the WLAN device requires:</td>
</tr>
<tr>
<td></td>
<td>- Either SNMP or CLI (SSH or Telnet) read access to perform queries.</td>
</tr>
<tr>
<td></td>
<td>- SSH or Telnet management (write) access to apply the WLAN Block action on wireless clients.</td>
</tr>
<tr>
<td>Ruckus Controller</td>
<td>Plugin management of the WLAN device requires:</td>
</tr>
<tr>
<td></td>
<td>- SNMP read access to perform queries</td>
</tr>
<tr>
<td></td>
<td>- SSH or Telnet management (write) access to apply the WLAN Block action on wireless clients.</td>
</tr>
<tr>
<td>Xirrus Controller</td>
<td>Plugin management of the WLAN device requires:</td>
</tr>
<tr>
<td></td>
<td>- SNMP read access to perform queries</td>
</tr>
<tr>
<td></td>
<td>- SNMP write access to apply the WLAN Block action on wireless clients</td>
</tr>
</tbody>
</table>

In addition, configuration of the WLAN device is typically necessary, in order for the WLAN device to send SNMP traps to CounterACT.
For detailed information about specific, wireless vendor models and operating system versions that are validated for Wireless Plugin management, refer to the WLAN INTEGRATIONS section in the CounterACT Network Devices Compatibility Matrix. You can access this matrix in one of the following locations, depending on the licensing mode your deployment is using:

- **Per-Appliance Licensing Mode** - [Product Updates Portal](#)
- **Centralized Licensing Mode** - [Customer Portal](#), Documentation Page.

See [Additional CounterACT Documentation](#) (Identifying Your Licensing Mode in the Console) to learn which licensing mode your deployment is using.

Plugin Configuration

This section describes how to configure the plugin. The configuration lets you connect WLAN devices to CounterACT Appliances and assign read/write permissions used to query and block wireless clients.

Configuration

Configure the Wireless Plugin to manage WLAN devices. The configured Wireless Plugin running on CounterACT Appliances is then able to execute the following plugin activities:

- Connect to the WLAN devices
- Assign read/write permissions used for querying the devices for information.
- Apply WLAN actions to detected wireless clients that are connected to a plugin-managed WLAN device.

This section describes how to configure the Wireless Plugin.

To configure the plugin:

1. Select **Options** from the **Tools** menu at the Console.
3. Select **Add**. The Add Wireless Device wizard opens and displays the General pane.

![Add Wireless Device](image)

At this point in the configuration process, the following configuration paths are available:

- **WLAN Device Management Configuration**: Configure a WLAN device for Wireless Plugin management. To continue with this configuration process flow, see [WLAN Device Management Configuration](#).

- **IP Address Range Configuration**: Configure a Wireless Plugin IP address range entry. IP address range information enables the CounterACT RADIUS server to provide RADIUS-based management of wireless clients attempting to connect to the network via WLAN devices of any vendor. To continue with this configuration process flow, see [Enable CounterACT RADIUS-based Management of Wireless Clients](#).

WLAN Device Management Configuration

This section provides the configuration process to use in order to configure the Wireless Plugin to manage a supported WLAN device.
General Configuration

![Add wireless - Step 1](image)

In the General pane:

1. In the **Product** field, select a supported WLAN device vendor.
2. In the **Address** field, enter the IP/FQDN of the WLAN device that the plugin is to manage. This entry can be any of the following:
 - An IPv4 address
 - A fully qualified domain name (FQDN)
 - An IPv6 address

 The value you configure is then used throughout the Console to identify the WLAN device entry.

3. In the **Connecting Appliance** field, select a CounterACT device. If your CounterACT deployment includes multiple Appliances connected to an Enterprise Manager, it is recommended to select an Appliance that is physically close to the WLAN device you are adding.

4. In the **optional Comment** field, enter descriptive text about the WLAN device and/or the configuration.

5. If either **Aruba Controller**, **Cisco Aironet Access Point** or **Motorola Controller** is selected in the **Product** field, then define the following:

 a. The **Read Connection Method** section - define the method the plugin must use to connect to the WLAN device. Available options: either **SNMP** or **Command Line**.

 b. The **Write Permission** section - enable or disable the plugin’s ability to apply available WLAN management actions. Either select or clear the **Enable WLAN management actions using Command Line** checkbox.
c. The **Miscellaneous** section (**Aruba Controller only**) - specify the format that the plugin must use when sending the MAC address of wireless clients to an Aruba Controller. Available options: either **Without colons** or **With colons**. By default, colons are used as delimiters in the MAC address.

6. If either *Cisco Controller* or *Xirrus Controller* is selected in the **Product** field, then define following in the **Write Permission** section:

 Enable or disable the plugin’s ability to apply available WLAN management actions. Either select or clear the **Enable WLAN management actions** checkbox.

7. If either an *AeroHive Controller*, a *Meru Controller* or a *Ruckus Controller* is selected in the **Product** field, then define the following in the **Write Permission** section:

 Enable or disable the plugin’s ability to apply available WLAN management actions. Either select or clear the **Enable WLAN management actions using Command Line** checkbox.

8. Select **Next**. The SNMP pane opens.

When the **Enable WLAN management actions** option is disabled for any managed WLAN device of any supported product vendor, the Wireless Plugin does not apply WLAN management actions (**WLAN Block** and **WLAN Role**) on wireless clients that are connected to the managed WLAN device. See **WLAN Actions** for information about the support for use of the WLAN management actions. See **Create Policies to Handle Detected Wireless Clients** for more information about blocking wireless clients.

SNMP Configuration

The plugin uses the information defined in the SNMP pane to connect to and query the managed WLAN device and retrieve information about its connected wireless clients. One example of retrieved information is the wireless network to which the wireless client is connected. See **WLAN Device – Read/Write Settings**.

The information that you configure in the SNMP pane must match the SNMP configurations defined in the WLAN device.
In the SNMP pane:

1. For AeroHive, Aruba, Cisco, Motorola and Ruckus controllers, the SNMP pane makes available the **Enable Notification Traps** checkbox. Select this checkbox to instruct the plugin to accept receipt of SNMP notification traps that are sent to it by the managed WLAN device.

 ![Add Wireless Device](image)

 Notification of newly connected wireless clients, via these traps, is received from the managed WLAN devices in near real-time.

 A received trap includes the MAC address and the IP address of the wireless client; the plugin can then query the WLAN device for all other wireless client information.

2. In the **Wireless Query Interval** field, specify in seconds the WLAN device query interval.

 a. For AeroHive, Aruba, Cisco, Motorola and Ruckus controllers, the default, query interval value is 600 seconds (10 minutes), due to their support of SNMP traps.

 b. For all other WLAN devices, the default value is 60 seconds (1 minute).

3. In the **SNMP Version** field, select the SNMP version from the drop-down menu.

 For an Aruba controller, a Cisco Aironet access point or a Motorola controller, if the **Command Line** option is selected in the **Read Connection Method** section of the General pane, both the **SNMP Version** and **Community** fields are not available for data entry.

 a. When either **V1** or **V2** is selected, in the **Community** field enter a community relevant to your SNMP version selection. Continue with step 5.
b. When **V3** is selected, the following fields display:

![SNMP Version](image)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User</td>
<td>Enter a user name.</td>
</tr>
<tr>
<td>Use Authentication</td>
<td>Select to enable authentication.</td>
</tr>
<tr>
<td>Authentication Protocol</td>
<td>Selectable protocol.</td>
</tr>
<tr>
<td>Password</td>
<td>Enter applicable password.</td>
</tr>
<tr>
<td>Confirm Password</td>
<td></td>
</tr>
<tr>
<td>Use Privacy</td>
<td>Select to enable privacy.</td>
</tr>
<tr>
<td>Privacy Protocol</td>
<td>Selectable protocol.</td>
</tr>
<tr>
<td>Password</td>
<td>Enter applicable password.</td>
</tr>
<tr>
<td>Confirm Password</td>
<td></td>
</tr>
<tr>
<td>Use Explicit Engine ID</td>
<td></td>
</tr>
<tr>
<td>Engine ID Value</td>
<td></td>
</tr>
</tbody>
</table>

Continue with step 4.

4. For plugin SNMP **V3** communication, configure the following fields:

a. In the **User** field, enter a user name.

b. Select **Use Authentication** to enable authentication. Enter applicable password and select the authentication protocol to use. Plugin-supported authentication protocols:

 - HMAC-MD5
 - HMAC-SHA

c. Select **Use Privacy** to enable privacy. Enter applicable password and select the encryption protocol to use. Plugin-supported encryption protocols:

 - DES
 - AES

 Configuring the plugin to use Privacy requires that you also configure the plugin to use Authentication.

d. In SNMPv3 communication, the Engine ID uniquely identifies each SNMP agent for queries and trap handling. Engine ID configuration options:

 - When managed WLAN devices in the network use default engine IDs, then the plugin automatically discovers the engine ID value. In this case, clear the **Use Explicit Engine ID** checkbox.
> When managed WLAN devices use operator-assigned engine ID values, automatic discovery of engine IDs by the plugin might not succeed. In this case, explicitly specify an engine ID value by selecting the Use Explicit Engine ID checkbox and specifying the Engine ID Value. For example, an explicit engine ID must be specified to define CounterACT as a Trap Receiver in Aruba 620 controllers.

Command Line Configuration

In the Command Line pane, configure the connection method and log in credentials that the Wireless Plugin uses when managing the WLAN device with CLI. Plugin management activities includes querying the managed WLAN device for information and applying WLAN management actions - the WLAN Block and the WLAN Role actions - on wireless clients that are connected to the managed WLAN device. See WLAN Device – Read/Write Settings.

In the Command Line pane, the Use Command Line checkbox is available:

- For Aruba controllers, Cisco Aironet access points and Motorola controllers, when either one of the following General pane options is selected:
 - The Command Line option
 - The Enable WLAN management actions using Command Line checkbox
- For Cisco controllers, when the Enable WLAN management actions checkbox is selected in the General pane.
- For AeroHive, Meru and Ruckus controllers, when the Enable WLAN management actions using Command Line checkbox is selected in the General pane.

With Xirrus controllers the Command Line pane displays, however, all its fields are disabled. The plugin only uses SNMP to apply WLAN management actions on Xirrus controllers.
You are required to complete the Command Line pane fields when configuring the plugin to manage a Cisco controller that runs the IOS-XE operating system. The Cisco IOS-XE operating system requires the Wireless Plugin to use CLI privilege mode write access for applying the WLAN Block action (the Enable WLAN management actions option is enabled in the General page) on wireless clients that are connected to the managed Cisco controller.

In the Command Line pane:

1. Select the **Use Command Line** checkbox When selected, the rest of the fields in the pane are enabled.

2. In the **Connection method** field, select SSH or Telnet to define the method that the plugin uses to establish a connection for management via CLI.

3. In the **User** and **Password** fields, enter the login credentials that the plugin uses to access the WLAN device.

4. If managing the WLAN device requires the Wireless Plugin to use CLI privilege mode write access and the provided login credentials are not of the privilege mode type, do the following:
 a. Select the **Enable privilege** checkbox.
 b. In the **Privileged password** field, enter the privilege mode password.
 c. In the **CLI timeout** field, specify in seconds the maximum amount of time that the plugin must wait to receive the response of the managed WLAN device, after sending it a CLI command.
 > For Motorola controllers, the default CLI timeout value is 60 seconds (1 minute).
For all other, managed WLAN devices, the default CLI timeout value is 5 seconds.

5. Do one of the following:
 a. If the CounterACT 802.1X Plugin is not installed, select Finish.
 b. If the CounterACT 802.1X Plugin is installed, select Next and continue with the section 802.1X Integration.

At some point in the future, if you need to disable the Use Command Line option for the managed controller, make sure that BEFORE disabling this option you first cancel all WLAN Block actions. Accomplish this action cancellation using any of the following methods:
 - Stop the Wireless Plugin
 - Stop all policies that use the WLAN Block action
 - Cancel all manually applied WLAN Block actions

Enable CounterACT RADIUS-based Management of Wireless Clients

Using the Wireless Plugin, you can configure an IP address range of WLAN devices, which enables the following CounterACT RADIUS-based management use cases:

- Enable the RADIUS-based authentication and authorization of wireless clients associating with any one of a group of access points that are deployed in the configured IP address range. The group of access points can be of any vendor and must support RADIUS.

 This use case requires the configuration of an IP address range that combines:
 - An <IP address network segment> with a subnet mask=<a value between 1 - 31>.

- Enable the RADIUS-based authentication and authorization of wireless clients associating with a specific, single wireless controller. The wireless controller can be of any vendor and must support RADIUS.

 This use case requires the configuration of a single IP address composed as follows:
 - An <IP address network segment> with the subnet mask=32.

Wireless Plugin actions and properties are not available with either of these RADIUS-based integrations, since the plugin does not manage the WLAN devices that are deployed in these types of integrations.

This section provides the process for configuring Wireless Plugin IP address range entries. For details about configuring the CounterACT RADIUS server to provide RADIUS-based authentication and authorization, refer to the CounterACT RADIUS Plugin Configuration Guide, version 4.3. See Additional CounterACT Documentation for information on how to access this guide.
General Configuration

In the General pane:

1. In the **Product** field, select the option *Generic (RADIUS-based)*. The General pane then re-displays.

2. In the **Address** field, define an IP address range:
 - Enter the starting IP address of the network segment. This entry can be any of the following:
 - An IPv4 address
 - An IPv6 address
 - Append to the IP address a forward slash (/), followed by the subnet mask value. Valid values are 1 - 32.

 - *The provided IP address network segment cannot overlap with that of any existing IP address range entry.*

 - *The provided combination of <IP address network segment> and subnet mask=32 is invalid if it conflicts with the IP address of an existing, managed WLAN device. For example, in the event of the provided combination 168.75.168.109/32 and the existing, managed WLAN device entry 168.75.168.109.*

 - *Individual managed WLAN devices can have an IP address that falls within an existing IP address range entry.*

 - *The identical SNMP Community information and the identical RADIUS Secret must be configured for all the multi-vendor access points that are deployed in the same IP address range. The plugin does not validate for this requirement.*
3. In the **optional Comment** field, enter descriptive text.

4. Select **Next**. The SNMP pane opens.

SNMP Configuration

The purpose of this pane is to configure valid SNMP credentials so the CounterACT RADIUS server, in the 802.1X Plugin, can use SNMP, in addition to using the RADIUS CoA and RADIUS POD protocols, to issue wireless client re-authentication requests to an AP. Configuration of SNMP credentials is **optional**.

The information that you configure in the SNMP pane must match the SNMP configurations defined in the WLAN device.

> The identical SNMP Community information must be configured for all WLAN devices (both individual Wireless Plugin-managed and Access Point IP Address Range) that are deployed in the same IP address range. The plugin does not validate for this requirement.

In the SNMP pane:

1. Select the **Use SNMP** checkbox. When selected, the rest of the fields in the pane are enabled.

2. In the **SNMP Version** field, select the SNMP version.
 - When either **V1** or **V2** is selected, in the **Community** field enter a community relevant to your SNMP version selection. Continue with step 4.
 - When **V3** is selected, the following fields display:

 a. When **V3** is selected, the following fields display:

SNMP Version	V3
User	
[] Use Authentication	
Authentication Protocol	HMAC-SHA
 | Password | |
 | Confirm Password | |
 | [] Use Privacy |
 | Privacy Protocol | DES |
 | Password | |
 | Confirm Password | |

 Continue with step 3.

3. For plugin **SNMP V3** communication, configure the following fields:
 - **User**: In the **User** field, enter a user name.
b. Select **Use Authentication** to enable authentication. Enter applicable password and select the authentication protocol to use. Plugin-supported authentication protocols:
 > HMAC-MD5
 > HMAC-SHA

c. Select **Use Privacy** to enable privacy. Enter applicable password and select the encryption protocol to use. Plugin-supported encryption protocols:
 > DES
 > AES

* Configuring the plugin to use Privacy requires that you also configure the plugin to use Authentication.

4. Select **Next**. The 802.1X Pane opens.

802.1X Integration

Following the
- Command Line pane in the [WLAN Device Management Configuration](#) process flow

or the
- SNMP pane in the [Enable CounterACT RADIUS-based Management of Wireless Clients](#) process flow,

the Add Wireless Device wizard opens the 802.1X pane. Configure the fields in the 802.1X pane if your CounterACT deployment is responsible for providing RADIUS-based authentication and authorization of detected, wireless clients attempting to connect to your organization's network via its WLAN devices.

In the 802.1X pane:

1. In the **RADIUS Secret as configured in the WLAN device** field, enter the necessary RADIUS secret to allow communication between the CounterACT RADIUS server and the WLAN device.

 * The identical RADIUS Secret must be configured for all WLAN devices (both individual Wireless Plugin managed and Access Point IP Address Range) that are deployed in the same IP address range. The plugin does not validate for this requirement.
2. Select **Finish**. The Wireless Pane re-displays containing the configured entry, either managed WLAN device or IP address range entry.

Review information about 802.1X and wireless integration before working with this capability.

To review RADIUS Plugin information:

1. In the Console, select **Tools > Options > Modules**. The Module pane opens.

2. In the Modules pane, select the **Authentication** module. The plugins, which are installed as part of the CounterACT Authentication Module, display beneath the Authentication entry.

3. In the Module pane, select the **RADIUS** entry from the table listing.

4. Select **Help**.
Control Plugin Query about Lightweight Access Points

In order for the Wireless Plugin to detect and resolve property information about supported vendors' lightweight access points, the Wireless Plugin queries the relevant WLAN controller about the lightweight access points that the controller manages. The following CounterACT property controls the frequency with which the Wireless Plugin queries a relevant WLAN controller about the lightweight access points that are under its management:

- conf.wireless_query_aps_interval.value

The property is defined per Appliance and the property's default value is 600 seconds (10 minutes). Run the following command to modify the value of this property (query frequency):

- fstool wireless set_property conf.wireless_query_aps_interval.value <number of seconds>

Verify That the Plugin Is Running

After configuring the plugin, verify that it is running.

To verify:

1. Select **Tools > Options** and then select **Modules**.
2. Navigate to the plugin and select **Start** if the plugin is not running.

Plugin Testing

The Wireless Plugin test verifies the following:

- Connectivity between CounterACT and the WLAN Device:
 - SSH/Telnet protocols: Tests connectivity using the credentials defined in the plugin.
 - SNMP protocol: Tests connectivity to the WLAN device and tests access to the WLAN device OIDs required for querying and retrieving information on connected wireless clients.
- WLAN Device Query: Identifies how many wireless clients are connected to the configured WLAN device.
- SNMP Traps: This test is performed for AeroHive, Aruba, Cisco and Motorola controllers. The test verifies whether or not the Enable Notification Traps option is selected in the plugin configuration for management of the controller.

Test the plugin configuration for managing:

- A WLAN device
- Multiple WLAN devices

The plugin configuration test is not available to perform for Access Point IP Address Range entries.
To run a test:
1. Select **Options** from the **Tools** menu. The Options pane opens.
2. Open the **Modules** folder and select **Wireless**. The Wireless pane opens.
3. Select one or more WLAN devices and then select **Test**.

![Wireless Plugins Configuration](image)

Troubleshooting

- **The device is not assigned to a CounterACT Appliance.** This can occur when you import predefined device settings. No CounterACT Appliance manages the device, so the test of communication with CounterACT does not complete successfully. In this case, the value in the Managed By column is **Unassigned** for the device.

 Select the device and select **Edit** to assign the device to a CounterACT Appliance.

- Due to the nature of the response to the plugin's **Get Users** test that is sent from the WLAN device of some vendors, when the device's User table is empty, the plugin reports this test as **failed** with the accompanying message **Failed to read mobile client mibs, SNMP error [Requested table is empty or does not exist]**. In the given scenario, the **Get Users** test actually succeeds; the plugin uses the appropriate MIB OID to retrieve the device's User table, however, the table happens to be empty at that point in time. Take note that
there can be legitimate test failure scenarios for which the plugin reports the same failure message.

Duplicate a Configuration

Often, controllers in a network share the same basic configuration. After you configure communication with a controller of a certain type, use the Duplicate option to apply that configuration to other instances of the same controller. For example, you can configure and test connection parameters for Motorola controllers, then duplicate these settings for all Motorola controllers in the network. You provide the IP/FQDN of each new WLAN device, which can be any of the following:

- An IPv4 address
- An FQDN
- An IPv6 address

Alternatively, you can import a list of IP/FQDN from a CSV file rather than having to manually enter them.

You cannot duplicate the configuration of Access Point IP Address Range entries.

To duplicate a configuration:

1. Select **Options** from the **Tools** menu at the Console.
3. Select a wireless device configuration. Then select **Duplicate**. The Duplicate Wireless dialog appears.

4. Do one of the following:

 a. To create a single new instance of the selected controller (the default selection), enter the IP/FQDN of the new controller in the **Duplicate to Single IP/FQDN** field.
b. To create multiple new instances of the selected controller, select the **Duplicate to Multiple IP/FQDN** option and select **Add** to add the IP/FQDN of the new WLAN devices one-by-one. You can select **Import** to import a list of IP/FQDN from a CSV file.

5. Select **OK**. CounterACT creates a wireless device for each new IP address, and applies the configuration settings of the existing controller to these devices.

Import and Export Configurations

In some cases it is useful and more efficient to copy and edit existing configurations. For example, to quickly duplicate settings on all CounterACT devices:

1. Export configurations.
2. Edit IP/FQDN and other device-specific fields.
3. Import the new definitions to another device. CounterACT creates new configurations based on imported data.

CounterACT uses a simple XML format to represent the settings and fields of the configuration screens.

To export configurations:

1. Select **Options** from the **Tools** menu at the Console.
3. Select the wireless device configurations you want to export. Then select **Export**. The Exporting wireless devices dialog appears.
4. Specify a name for the exported file, browse to a target directory, and select **Save**.

An XML file containing the selected device configurations is saved to the target directory.

To import configurations:

1. Select **Options** from the **Tools** menu at the Console.

3. Select **Import**. The Import wireless devices dialog appears.

4. Browse to the wireless device configuration file you want to import and select it. Then select **Import**.

CounterACT creates wireless device configurations using the content imported from the XML file.

Wireless Pane Information and Failover Clustering

Plugin configuration definitions of managed WLAN devices are displayed in the Wireless pane. During a failover scenario, the Wireless pane displays the following information in the **Managed By** column for managed WLAN devices that are currently failed over to a *recipient* Appliance:

- `<current managing Appliance, after failover>*(<current managing Appliance status>)`

A **Managed By** column tooltip is displayed for managed WLAN devices that are currently failed over to a *recipient* Appliance. The tooltip contains the following information:

- **Current**: Current managing Appliance, after failover.
- **Original**: Original managing Appliance, prior to failover.
- **Plugin status**: The plugin status on the current Appliance is `<plugin status>`.

For information about CounterACT *Failover Clustering* and the Wireless Plugin, see [*Failover Clustering Support*](#).
Scheduled Component Backup of Wireless Plugin Configuration

Wireless Plugin information is included as part of CounterACT’s component backup processing (see CounterACT Requirements). At a scheduled interval, CounterACT backs-up and then exports the Wireless Plugin's configuration, if the CounterACT user has enabled the component backup feature and defined the various component backup settings in the Component Backup tab of the Backup pane (Options > Advanced > Backup).

The component backup feature encrypts sensitive fields of the configuration, as done for a regular export. To import the backup files, use the password specified in the Encryption Password section of the Component Backup tab.

Change Connecting Appliance of WLAN Device

The following procedure is provided for changing the Connecting Appliance of a managed WLAN device. Use of this procedure is especially necessary when plugin actions are currently applied on wireless clients that are connected to the managed WLAN device; as actions applied by a plugin running on CounterACT device <n> can only be canceled by that plugin/CounterACT device <n>.

To change the Connecting Appliance of a managed WLAN device:

1. In the Console Modules pane, double-click on the Wireless entry. The Wireless - Appliances Installed window opens.

2. Select the CounterACT device that is the currently assigned Connecting Appliance of the managed WLAN device and select Stop.

 Doing so results in the plugin, which is running on the currently assigned Connecting Appliance, first canceling all the actions that it applied on the WLAN devices that it managed and then stopping.

3. In the Wireless pane, select a managed WLAN device and select Edit. The Edit Wireless Device window opens.

4. In the General tab, select from the Connecting Appliance drop-down menu a different Connecting Appliance IP address for the managed WLAN device.

5. Select OK. The Edit Wireless Device window closes.

6. In the Wireless pane, select Apply to save the modified plugin configuration.

 Doing so results in the plugin that is running on the newly assigned Connecting Appliance to interoperate with the managed WLAN device - apply WLAN actions and query for WLAN device information.

8. Select the CounterACT device that was the previously assigned Connecting Appliance of the managed WLAN device and select Start.

 Doing so results in the plugin, currently stopped on that CounterACT device, to restart and run again.
Centralized Web Authentication with Cisco Wireless LAN Controllers

Centralized web authentication is a method that is used to accomplish the redirection of guest endpoints for the purposes of managing these endpoints, which have requested wireless access to your organization’s network. For details about deploying CounterACT centralized web authentication with Cisco WLCs, refer to the CounterACT RADIUS Plugin Configuration Guide, version 4.3. See Additional CounterACT Documentation for information on how to access this guide.

Display Wireless Detection Information at the Console

Information learned by the Wireless Plugin, about plugin-managed WLAN devices and the endpoints (wireless clients) that are connected to them, displays in the Console Home tab’s All Hosts pane.

(Aruba, Cisco and Ruckus only) The plugin reports detected lightweight access point(s) as entries in the All Hosts pane.
Presented information in the **All Hosts** pane includes:

- Wireless client IP address and MAC address
 - For connected IPv6 endpoints, whether **IPv6-only endpoints** or **dual-stack endpoints**, IP address information includes IPv6 Addresses and IPv6 Link-Local Address

- The wireless network name (SSID) to which the client is connected
- The wireless access point name to which the client is connected
- The client’s authentication method, for example, 802.1X, WPA, none
- The IP address of the plugin-managed WLAN device

- **(Aruba, Cisco and Ruckus only)** For a detected endpoint, report the IP address of detected lightweight access point(s) to which it is connected.

- **WLAN Device Vendor** property information is reported for both of the following **All Hosts** pane entries:
 - Plugin-managed WLAN devices
 - Detected, connected wireless clients

To display/remove the display of wireless information:

1. In the **All Hosts** pane, right-click a table column heading.

![Table with columns Host, HostIP, Segment, Add/Remove Columns, Remove Column, Best Fit Column, and a column to fit table columns to view.]

2. Select **Add/Remove Columns**. The Add/Remove Columns window opens.

3. In the navigation tree of the **Available Columns** pane, click the **Properties** folder to expand it and display its content.

4. In the Properties folder, click the **Wireless** folder to expand it and display its content.
5. To add wireless information to the All Hosts pane display:
 a. In the expanded Wireless folder, select from among the available wireless information columns.
 b. Select Add. The added information columns display in the Selected Columns pane.

6. To add the IPv6 Address column to the All Hosts display:
 a. In Properties folder, select the Device Information folder to display its content.
 b. Select IPv6 Address and select Add. The column displays in the Selected Columns pane.
 The IPv6 Address column displays the IPv6 address of the following pane entries:
 > Detected/connected endpoints
 > Managed WLAN devices, when the plugin is configured with the FQDN of the device and the FQDN is associated with an IPv6 address
 The IPv6 Address column does not display by default.
7. To remove information from the All Hosts pane display:
 a. In the Selected Columns pane, select from among the information columns currently selected for display.
 b. Select Remove. The removed information columns display in the Available Columns pane.

8. In the Add/Remove Columns window, select Apply and then select OK. The All Hosts pane display reflects your column updates.

To promptly remove the display of wireless information:
1. In the All Hosts pane, right-click a wireless information column heading.

2. Select Remove Column. The column is immediately removed from the All Hosts pane display.

Create Policies to Handle Detected Wireless Clients

You can use CounterACT’s policy tools to detect, evaluate and impose control on wireless clients connected to a WLAN device. For example:

- Create a policy that detects wireless clients infected with malware and block them via the WLAN device.
- Send email to network administrators regarding wireless policy violations.
- Communicate directly with users at wireless clients via email or web session redirection.

This section presents the following topics:

- Wireless Client Properties
- Wireless SNMP Trap Criteria
- WLAN Device Properties
- Wireless Admission Events
- Policy Template: VR WPA2 KRACK
- WLAN Actions
Wireless Client Properties

The plugin provides the following wireless client properties for use in CounterACT policies:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WLAN AP Location*</td>
<td>Property only supported for Aruba and Cisco controllers. Identifies the physical location of the access point to which the wireless client is connected.</td>
</tr>
<tr>
<td>WLAN AP Name</td>
<td>Identifies the name of the access point to which the wireless client is connected.</td>
</tr>
<tr>
<td>WLAN AP Name Change</td>
<td>Identifies that a change in value occurred in the WLAN AP Name property.</td>
</tr>
</tbody>
</table>
| WLAN Association Status | Property only supported for Aruba and Cisco controllers. Identifies whether the wireless client is associated with an access point and is authenticated. For other supported vendors, this property is resolved with any of the following values:
 - Unknown
 - Blacklisted (WLAN Block action is applied)
 - Disassociated (wireless client is disconnected/offline)
 Values vary by wireless equipment vendor. Refer to the vendor-specific configuration guides for this plugin and vendor documentation. |
<p>| WLAN Association Status Change | Identifies that a change in value occurred in the WLAN Association Status property. |
| WLAN Authentication Method | Identifies the authentication method used by the wireless client to authenticate with the access point. The possible values differ depending on the access point vendor. Resolution of this property for managed Aruba WLAN devices requires the plugin's Read Connection Method to be SNMP. |
| WLAN Authentication Method Change | Identifies that a change in value occurred in the WLAN Authentication Method property. |
| WLAN BSSID* | Property only supported for Aruba and Cisco controllers. Identifies the BSSID of the access point to which the wireless client is connected. |
| WLAN BSSID Change | Identifies that a change in value occurred in the WLAN BSSID property. |
| WLAN Client Role* | Property only supported for Aruba and Cisco controllers. Identifies the role assigned by the access point to the wireless client. |
| WLAN Client Role Change | Identifies that a change in value occurred in the WLAN Client Role property. |
| WLAN Client User Agent* | Property only supported for Aruba mobility controllers running ArubaOS version 6.0.1 or later. Identifies the user agent running on the wireless client. |</p>
<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WLAN Client User Agent Change</td>
<td>Identifies that a change in value occurred in the WLAN Client User Agent property.</td>
</tr>
<tr>
<td>WLAN Client Username*</td>
<td>Property only supported for Aruba and Cisco controllers. Identifies the username employed by the wireless client to authenticate with the access point.</td>
</tr>
<tr>
<td>WLAN Client Username Change</td>
<td>Identifies that a change in value occurred in the WLAN Client Username property.</td>
</tr>
<tr>
<td>WLAN Client VLAN*</td>
<td>Property only supported for Aruba and Cisco controllers. Identifies the VLAN to which the wireless client is connected.</td>
</tr>
<tr>
<td>WLAN Client VLAN Change</td>
<td>Identifies that a change in value occurred in the WLAN Client VLAN property.</td>
</tr>
<tr>
<td>WLAN Client Connectivity Status</td>
<td>Identifies whether the wireless client is connected to an access point.</td>
</tr>
<tr>
<td>WLAN Client Connectivity Status Change</td>
<td>Identifies that a change in value occurred in the WLAN Client Connectivity Status property.</td>
</tr>
<tr>
<td>WLAN Device IP/FQDN</td>
<td>Identifies either the IP address or the fully qualified domain name of the WLAN device to which the wireless client is connected.</td>
</tr>
<tr>
<td>WLAN Device IP/FQDN Change</td>
<td>Identifies that a change in value occurred in the WLAN Device IP/FQDN property.</td>
</tr>
<tr>
<td>WLAN Device Software</td>
<td>Identifies the software release that is running on the lightweight AP to which the wireless client is connected. Only supported for lightweight AP of vendors Aruba and Cisco.</td>
</tr>
<tr>
<td>WLAN Device Vendor</td>
<td>Identifies the vendor of the plugin-managed WLAN device to which the wireless client is connected.</td>
</tr>
<tr>
<td>WLAN Detected Client Type*</td>
<td>Property only supported for Aruba mobility controllers running ArubaOS version 6.0.1 or later. Identifies the operating system of the wireless client.</td>
</tr>
<tr>
<td>WLAN Detected Client Type Change</td>
<td>Identifies that a change in value occurred in the WLAN Detected Client Type property.</td>
</tr>
<tr>
<td>WLAN SSID</td>
<td>Identifies the SSID (service set identifier) to which the wireless client is connected.</td>
</tr>
<tr>
<td>WLAN SSID Change</td>
<td>Identifies that a change in value occurred in the WLAN SSID property.</td>
</tr>
</tbody>
</table>

* For the Aruba (autonomous AP) Instant model and for the controllers of other supported vendors, the plugin resolves the property with the text string N/A and a relevant code.
When the plugin uses SNMP as its read method for managing an Aruba WLAN controller, the following limitations are in effect for wireless client property resolution:

- For all connected endpoints, the plugin cannot resolve (*Irresolvable*) the properties:
 - WLAN Client User Agent
 - WLAN Client User Agent Change
 - WLAN Detected Client Type
 - WLAN Detected Client Type Change

- For connected *IPv6-only* endpoints, the plugin also cannot resolve (*Irresolvable*) the properties:
 - WLAN AP Location
 - WLAN AP Name
 - WLAN AP Name Change
 - WLAN Authentication Method
 - WLAN Authentication Method Change
 - WLAN Client VLAN

To use these properties:

1. Create or edit a policy.
2. In the **Main Rule/Sub-Rule** dialog box, select **Add** from the **Condition** section. The Condition dialog box opens.
3. Expand the **Wireless** folder and/or the **Track Changes** folder and choose a property.
Wireless SNMP Trap Criteria

The **Trap Received** property is used to define conditions based on SNMP trap events. The Wireless Plugin provides the following SNMP trap event criteria for use with the **Trap Received** property:

- **Wireless Address Learned**
- **Wireless Address Removed**

Use these criteria in policies to apply actions to wireless clients based on SNMP traps related to wireless devices. For example, apply actions to wireless clients when CounterACT first detects an SNMP trap for them.

WLAN Device Properties

The plugin provides the following WLAN device properties for use in CounterACT policies:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WLAN Device Software</td>
<td>Identifies the software release that is running on a:</td>
</tr>
<tr>
<td></td>
<td>- Plugin-managed WLAN device</td>
</tr>
<tr>
<td></td>
<td>- Lightweight AP of vendors Aruba and Cisco</td>
</tr>
<tr>
<td>WLAN Device Vendor</td>
<td>Identifies the vendor of a:</td>
</tr>
<tr>
<td></td>
<td>- Plugin-managed WLAN device</td>
</tr>
<tr>
<td></td>
<td>- Lightweight AP of vendors Aruba, Cisco and Ruckus</td>
</tr>
<tr>
<td>WLAN Managing Controller</td>
<td>Property is only supported for the wireless products of the supported vendors Aruba, Cisco and Ruckus.</td>
</tr>
<tr>
<td></td>
<td>Identifies either the IP address or the fully qualified domain name of the WLAN controller managing the lightweight AP.</td>
</tr>
<tr>
<td>WLAN Managing Controller Change</td>
<td>Identifies that a change in value occurred in the WLAN Managing Controller property.</td>
</tr>
<tr>
<td>Property</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>WLAN Network Function</td>
<td>The plugin resolves this property for the WLAN devices of all supported WLAN vendors with any of the following values:</td>
</tr>
<tr>
<td></td>
<td>- Controller - the plugin-managed WLAN device is determined to be a WLAN controller</td>
</tr>
<tr>
<td></td>
<td>- Autonomous AP - the plugin-managed WLAN device is determined to be an autonomous access point.</td>
</tr>
<tr>
<td></td>
<td>- Lightweight AP - the device is determined to be a lightweight access point that is associated with (managed by) a plugin-managed WLAN controller</td>
</tr>
<tr>
<td></td>
<td>- Other - the device is determined to be a connected wireless client.</td>
</tr>
</tbody>
</table>

Wireless Admission Events

Use CounterACT admission events to identify and evaluate the occurrence of specific network events. The Wireless Plugin makes available the following admission events:

<table>
<thead>
<tr>
<th>Admission Event</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WLAN lightweight AP</td>
<td>Event only supported for the lightweight APs of vendors Aruba, Cisco and Ruckus.</td>
</tr>
<tr>
<td>Lightweight AP connected</td>
<td>Identifies that a lightweight access point is newly connected to a plugin-managed WLAN controller.</td>
</tr>
<tr>
<td>Wireless Host Connected</td>
<td>Identifies that an endpoint is newly connected to a plugin-managed WLAN device.</td>
</tr>
</tbody>
</table>

Incorporate these wireless admission events as criteria for evaluation in policy conditions, either in a policy main rule and/or in a policy sub-rule.

Policy Template: VR WPA2 KRACK

Use the VR WPA2 KRACK policy template (**Policy** tab > Add > Vulnerability and Response) to create a policy that classifies the following items according to their KRACK vulnerability:

- Plugin-managed WLAN devices of vendors Aruba and Cisco
- Lightweight APs of vendors Aruba and Cisco
- Wireless clients (endpoints) connected to any of the above and running one of the following operating systems:
 - Windows (both HPS-managed and unmanaged endpoints)
 - Android
 - Linux
 - iOS
 - Macintosh
The policy evaluates WLAN devices and Lightweight APs based on their installed software version and evaluates connected wireless clients based on the October 2017 Microsoft Security Updates being present on these wireless clients.

- Effective policy evaluation requires that the Primary Classification policy is also running on your CounterACT devices.

Policies created from the VR WPA2 KRACK policy template include use of the WLAN Device Software property to detect KRACK vulnerability. Customize the policy, as necessary, to address your organization's specific network security requirements; customization includes configuring the policy to apply a plugin-provided WLAN action on detected, vulnerable endpoints. Refer to the CounterACT Security Policy Templates Configuration Guide for detailed requirements information about the VR WPA2 KRACK policy template. See Additional CounterACT Documentation for information on how to access this guide.

WLAN Actions

The Wireless Plugin provides the following actions that can be applied on detected wireless clients:

- **WLAN Block Action**
- **WLAN Role Action**

WLAN Block Action

Apply the *WLAN Block* action on wireless clients to block them from accessing a wireless network. The applied action can be cancelled on detected, wireless clients.

- For Cisco controllers running the IOS-XE operating system, the plugin uses CLI to apply the *WLAN Block* action.
- This action is *not supported* for use on Aruba Instant Access Points.

When you use the *WLAN Block* action in a policy, wireless clients that match the policy conditions are blocked. Blocking is accomplished using the wireless client MAC address. When a policy re-check is performed, wireless clients found to no longer match policy conditions are unblocked (released).

See **Block Wireless Clients Exhibiting Malicious Intent** for a sample policy using this action.
Apply Action Only on Managing WLAN Device

The Parameters tab of the *WLAN Block* action contains the following option:

- **Apply action only on the WLAN device managing the endpoint access**

The option is disabled by default. Enabling this option instructs the plugin to apply the action in the following manner:

- Only block endpoint access on the WLAN device that is currently responsible for managing the access of the matching/targeted endpoint.
 - When a blocked endpoint moves such that a different WLAN device is now responsible for managing its wireless network access, endpoint access continues to be blocked on all previous, managing WLAN devices, in addition to being blocked on the currently responsible, managing WLAN device.

When the option is disabled, the plugin applies the *WLAN Block* action in the following manner:

- Block endpoint access -
 - on the WLAN device that is currently responsible for managing the access of the matching/targeted endpoint and on all other WLAN devices being managed by the same CounterACT Appliance
 - and on all WLAN devices being managed by the CounterACT Appliance whose IP assignment includes the IP address of the matching/targeted endpoint

WLAN Role Action

Apply the *WLAN Role* action to assign the wireless client a controller-defined role. Typically, roles specify VLAN, ACL, QoS or other restrictions or service settings for the wireless client. You must define roles on the wireless controllers, in order for the plugin to apply this action.
The *WLAN Role* action is **supported** for use on the following WLAN devices:

- Aruba controllers, excluding Aruba Instant Access Points
- Cisco controllers, excluding Cisco controllers that run the IOS-XE operating system

Each vendor uses a different term for the role assignment by the *WLAN Role* action:

- For Aruba controllers, the *WLAN Role* action assigns a *User Role*.
- For Cisco controllers, the *WLAN Role* action assigns an *Interface*.

When you use this action in a policy, the specified role overrides the role assigned by wireless devices for wireless clients that match the policy conditions. When wireless clients no longer match policy conditions, CounterACT cancels the action and the relevant wireless device, once again, determines the role that is assigned to the wireless client.

To use the *WLAN Role* action, specify the following fields and options:

<table>
<thead>
<tr>
<th>Action Fields</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Role Name</td>
<td>The name of the role, as defined on the WLAN device.</td>
</tr>
<tr>
<td></td>
<td>- For Aruba controllers, this is the name of a User Role.</td>
</tr>
<tr>
<td></td>
<td>- For Cisco controllers, this is the name of an Interface.</td>
</tr>
<tr>
<td>Description</td>
<td>(Optional) A description of the role, or the situation that prompted role assignment. This comment is stored in the controller's log.*</td>
</tr>
<tr>
<td>Force re-authentication after the role is applied</td>
<td>When this option is selected, existing wireless client WLAN sessions are disconnected after role assignment. This generates disconnect and reconnect traps when the wireless client reconnects. CounterACT authenticates the wireless client with its new role.</td>
</tr>
<tr>
<td></td>
<td>- VoIP and media sessions are dropped when the wireless client is disconnected.</td>
</tr>
</tbody>
</table>

Only one role can be assigned to a wireless client at any time. If this action has been used several times to assign different roles to a wireless client:

- Each *WLAN Role* action overwrites the previous action, and the wireless client receives only the most recently specified role.
- When the most recent *WLAN Role* action no longer applies to the wireless client, the relevant controllers are restored to their original configuration before CounterACT assigned *any* roles to the wireless client.

When the *WLAN Block* action applies to a wireless client, you cannot assign a role to the wireless client. However, you can block a wireless client after a role has been assigned to it.

To ensure that the specified role remains assigned to the wireless client, the *WLAN Role* action is automatically re-applied to a wireless client when there is a change in the following wireless client properties:

- **WLAN Device IP/FQDN**
- **Current WLAN Client Role**
- **WLAN Client Connectivity Status**
See the following sections for vendor-specific deployment considerations:

- Using the WLAN Role Action with Aruba Controllers
- Using the WLAN Role Action with Cisco Controllers

Using the WLAN Role Action with Aruba Controllers

To implement the *WLAN Role* action, the plugin adds a role derivation rule to the AAA profile used by the wireless client. The rule applies a previously defined *user role* to the wireless client.

- The string you enter in the **Description** field of the action is used to label the role derivation rule.
- When you select the **Force re-authentication** option, the plugin removes the wireless client from the user table of the controller to initiate re-authentication.

The *WLAN Role* action is **not supported** for use on Aruba Instant Access Points.

Plugin Configuration

When configuring plugin management of an Aruba controller:

- Applying this action requires command line interface (CLI) communication with the controller. Make sure to:
 - Select **Command Line** as the **Read Connection Method** and select the **Enable WLAN management actions using Command Line** option.
 - Specify command line credentials.

Controller Configuration

Perform the following configuration task for all controllers and WLANs that will implement the action:

- Define the desired User Role(s) and enable them.

Default AAA Profile

In some cases the action is applied to a wireless client before it is associated with an AAA profile. Similarly, it may be unclear which AAA profile to roll back to when the action no longer applies to a wireless client. You can define a default profile that the plugin uses in these cases.

To define a default AAA profile:

1. Log in to the Enterprise Manager and open the `local.properties` file in the following directory:
 `/usr/local/forescout/plugin/wireless/local.properties`
2. Add the following line to the file:
   ```
   conf.aruba_default_profile.value =
   ```
3. Specify a default profile. The profile you specify must exist on the controller.
4. Save the file.
Using the WLAN Role Action with Cisco Controllers

To implement the WLAN Role action, the plugin defines a MAC Filter entry that selects the wireless client and applies an interface that is currently defined for the controller. The plugin adds this entry to the MAC Filter table using either one of the following options, when applying the WLAN Role action to a connected wireless client:

- **Any WLAN Connection** option - when the plugin creates or updates the wireless client's MAC Filtering entry in the controller, the entry is defined to apply to the wireless client regardless of the WLAN to which the wireless client is connected. This is the default option.

- **Current WLAN Connection** option - when the plugin creates or updates the wireless client's MAC Filtering entry in the controller, the entry is defined to apply to the wireless client only when connected to the specific WLAN.

The option available for plugin use is enabled per Appliance on which the plugin runs.

The string you enter in the Description field of the WLAN Role action is used to label the MAC Filter entry.

When you select the Force re-authentication option, the plugin sends a deauthenticate command for the wireless client to the controller.

> RADIUS authentication is not compatible with MAC filtering. This means the WLAN Role action does not work with Cisco controllers in typical environments that use RADIUS authentication. It is recommended to use the CounterACT RADIUS Plugin for VLAN/Interface assignment.

Cisco controllers cannot simultaneously apply Blacklist and MAC Filtering features to a wireless client. When you apply the WLAN Block action to a wireless client to which the WLAN Role action is already applied, the MAC Filter entry corresponding to the assigned role is removed from the controller database. When the WLAN Block action is removed, the WLAN Role Action is re-applied to the wireless client using the last role assigned to the wireless client.

The WLAN Role action is **not supported** for use on Cisco controllers that run the IOS-XE operating system.

Plugin Configuration

When configuring plugin management of a Cisco controller:

- Applying this action requires SNMP communication with the controller. Make sure to:
 - Select the Enable WLAN management actions option.
 - Specify SNMP credentials.

Appliance Configuration

The MAC Filter entry option used by the plugin when applying the WLAN Role action to a connected wireless client is enabled per Appliance on which the plugin runs. The enabled option is available for all Cisco wireless controllers being managed by a specific Appliance. Per Appliance, Any WLAN Connection is the option that is enabled by default.
To enable the *Current WLAN Connection* option for an Appliance, run the following command:

```
fstool wireless set_property conf.cisco_associated_wlan_in_role.value 1
```

To re-enable the default *Any WLAN Connection* option for an Appliance, run the following command:

```
fstool wireless set_property conf.cisco_associated_wlan_in_role.value 0
```

Controller Configuration

Perform the following configuration tasks for all controllers and WLANs that will implement the action. Refer to Cisco documentation for detailed instructions and configuration options.

- Define the desired Interface(s) and enable them.
 - In the configuration GUI, navigate to **WLANs > Edit > General** and select the Interface in the **Interface/Interface Group** field.
 - From the command line submit the following command:
    ```
    config interface create <interface name> <wlan-id>
    ```

- Enable AAA override to allow override of the WLAN default interface.
 - In the configuration GUI, navigate to **WLANs > Edit > Advanced** and select the **Allow AAA override** checkbox.
 - From the command line submit the following command:
    ```
    config wlan aaa-override enable <wlan-id>
    ```

- Enable MAC Filtering for Layer 2 security.
 - In the configuration GUI, navigate to **WLANs > Edit > Security > Layer 2** and select the **MAC Filtering** checkbox.
 - From the command line submit the following command:
    ```
    config wlan mac-filtering enable <wlan-id>
    ```

- Enable Web Policy on MAC Filtering failure for Layer 3 security. If MAC Filtering does not identify the wireless client and it remains Associated but not Authenticated, CounterACT applies the action based on the Association trap.
 - In the configuration GUI, navigate to **WLANs > Edit > Security > Layer 3** and select the **Web Policy** checkbox.
 - Select the **On MAC filter failure** option. In the **Preauthentication ACL** field, select an ACL which allows CounterACT to inspect the wireless client.
 - From the command line submit the following commands:
    ```
    config wlan security web-auth on-macfilter-failure <wlan-id>
    config wlan security web-auth acl <wlan-id> <ACL_name>
    ```
• *(Optional)* When a controller handles large numbers of wireless clients, it may be necessary to increase the size of the controller database to accommodate filtering entries created by CounterACT. If the controller database cannot accept new MAC Filtering entries, the *WLAN Role* action is not applied to any more wireless clients on the controller and CounterACT issues the following error message:

Assign Role action failed. Wireless plugin failed to create MAC Filter entry on *WLAN device* <IP address of the WLAN device>. Verify that the interface referenced by the role is defined on the controller, and the maximum size of the *WLAN device* database is not exceeded.

If you encounter this error condition, consider increasing the size of the controller database. Refer to your vendor's product documentation.

Sample Policies

This section guides you through the creation of the following useful CounterACT policies:

Wireless User Notification – Company Security and Privacy Policy
Block Wireless Clients Exhibiting Malicious Intent
Prevent Wireless Client Access to Organizational Server Farm

Wireless User Notification – Company Security and Privacy Policy

Create a policy that lets administrators introduce wireless device users to the company security and privacy policy. Notification is carried out by redirecting wireless client Web sessions to a customized message. The user's session is redirected when attempting to access the Web and released when the user confirms reading the message. If the user rejects the message, web access is blocked. For this policy to be effective, the traffic coming to and from the wireless wireless clients should be monitored by a CounterACT Appliance.
To create the policy:

1. Select the **Policy** tab from the Console toolbar. The Policy Manager opens.

2. Select **Add**. The Policy Wizard opens.

3. Select **Custom**. Select **Next**. The Name page opens.

4. Enter a policy name and description.
5. Select **Next**. The Scope page opens.

6. Use the **IP Address Range** dialog box to define which endpoints are inspected.

![IP Address Range dialog box](image)

The following options are available:

- **All IPs**: Include all IP addresses in the Internal Network.
- **Segment**: Select a previously defined segment of the network. To specify multiple segments, select **OK** or **Cancel** to close this dialog box, and select **Segments** from the Scope page.
- **Unknown IP addresses**: Apply the policy to endpoints whose IP addresses are not known. Endpoint detection is based on the endpoint MAC address.

7. Select **OK** and then select **Next**. The Main Rule page opens.

![Main Rule dialog box](image)

8. In the **Condition** section, select **Add**.

9. Expand the **Wireless** group and then select **WLAN SSID**.
10. Define the property:
 a. Verify that **Meets the following criteria** is selected.
 b. Select **Matches** from the drop-down list and then enter the SSID the expected wireless clients will use for this policy (for example *Production* as shown below). (The SSID must be defined in the controller.)
 c. Select **Match case**.

11. Select **OK** to return to the Main Rule page.
12. Select **Add** from the **Actions** section.
13. Expand the **Notify** group and then select **HTTP Notification**.

14. In the **Message Text** text box, enter your message to wireless users. Select **Help** on the dialog box for information about additional HTTP Notification.

15. Select **OK** to return to the Main Rule page.
16. Select **Finish** to create the policy.
17. In the Policy Manager, select **Apply**.

Block Wireless Clients Exhibiting Malicious Intent

Create a policy that disconnects wireless clients from WLAN controllers when malicious activity (worms, hackers, self-propagating malware) is detected at the wireless client.

To create the policy:

1. Select the **Policy** tab from the Console toolbar. The Policy Manager opens.
2. Select **Add**. The Policy Wizard opens.

3. Select **Custom**. Select **Next**. The Name page opens.

4. Enter a policy name and description.

5. Select **Next**. The Scope page opens.

6. Use The IP Address Range dialog box to define which endpoints are inspected.

The following options are available:

- **All IPs**: Include all IP addresses in the Internal Network.

- **Segment**: Select a previously defined segment of the network. To specify multiple segments, select **OK** or **Cancel** to close this dialog box, and select **Segments** from the Scope page.

- **Unknown IP addresses**: Apply the policy to endpoints whose IP addresses are not known. Endpoint detection is based on the endpoint MAC address.
7. Select **OK** and then select **Next**. The Main Rule page opens.

8. In the **Condition** section, select **Add**.

9. Expand the **Wireless** group and then select **WLAN Client Connectivity Status**.

10. Verify that **Meets the following criteria** is selected.

11. Select **OK** to return to the Main Rule page.

12. Select **Add** from the **Condition** section again. The Condition dialog box opens.

13. Expand the **Events** group and select **Malicious Event**.
14. Verify that **Meets the following criteria** is checked.

15. Select **Add**. The Malicious Event dialog box opens.

16. Select **Select All**.
17. Select **OK**. All the events appear in the Condition dialog box.

![Condition dialog box](image)

18. Select **OK** to return to the Main Rule page.

19. Select **Add** from the **Actions** sections. The Action dialog box opens.

20. Select **Restrict** and then **WLAN Block**.

![Action dialog box](image)

21. Select **OK** to return to the Main Rule page.

22. Select **Finish** to return to the Policy Manager.

23. Select **Apply**.
Prevent Wireless Client Access to Organizational Server Farm

Create a policy that prevents wireless clients in a specific building from connecting to a server farm.

To create the policy:

1. Select the **Policy** tab from the Console toolbar. The Policy Manager opens.
2. Select **Add**.
3. Select **Custom**.
4. Select **Next**. The Name page opens.
5. Enter a policy name and description.
6. Select **Next**. The Scope page opens.
7. Use The IP Address Range dialog box to define which endpoints are inspected.
The following options are available:

- **All IPs**: Include all IP addresses in the Internal Network.
- **Segment**: Select a previously defined segment of the network. To specify multiple segments, select OK or Cancel to close this dialog box, and select **Segments** from the Scope page.
- **Unknown IP addresses**: Apply the policy to endpoints whose IP addresses are not known. Endpoint detection is based on the endpoint MAC address.

8. Select **OK** and then select **Next**. The Main Rule page reopens.

9. In the **Condition** section, select **Add**.

10. Expand the **Wireless** group and then select **WLAN Client Connectivity Status**.

11. Verify that **Meets the following criteria** is selected.

12. Select **OK** to return to the Main Rule page.

13. Select **Add** from the **Condition** section again. The Condition dialog box opens.

14. Expand the **Wireless** group and select **WLAN AP Name**.
15. Define the property:
 a. Verify that **Meets the following criteria** is selected.
 b. In the drop-down list select **Starts With** and select the access point name. (Provided this naming scheme is used for the access points.)

16. Select **OK** to return to the Main Rule page.

17. In the **Actions** section select **Add**. The Action dialog box opens.

18. Select **Restrict** and then **Virtual Firewall**.
19. Create **Blocking Rules** to your server farm from wireless clients in locations that you defined.

a. Select **Add**. The Blocking Rules dialog box opens.

![Blocking Rules Dialog Box]

b. **Define a required rule.**

c. **Select OK.**

Repeat until you have defined all required rules.

20. **Select OK** to return to the Main Rule page.

21. **Select Finish** to return to the Policy Manager.

22. **Select Apply.**

Select **Help** for more information about working with the **Virtual Firewall** action.
Displaying Wireless Inventory Information

Use the CounterACT Asset Inventory to view a real-time display of wireless device network activity at multiple levels. The Asset Inventory lets you:

- Broaden your view of the organizational network from device-specific to activity-specific.
- View wireless devices that have been detected with specific attributes.
- Incorporate inventory detections into policies.

To access the inventory:

1. Select the **Asset Inventory** tab from the Console toolbar.

2. Navigate to the Wireless entries. The wireless Asset Inventory view is based on the wireless client properties that the plugin resolves.

Refer to **Working at the Console > Working with Inventory Detections in the CounterACT Administration Guide or the Console, Online Help for information about how to work with the CounterACT Inventory.**
Network Module Information

The Wireless Plugin is installed with the CounterACT Network Module. The Network Module provides network connectivity, visibility and control through the following plugin integrations:

- Centralized Network Controller Plugin
- Switch Plugin
- VPN Concentrator Plugin
- Wireless Plugin

The Network Module is a ForeScout Base Module. Base Modules are delivered with each CounterACT release and may also be made available in between CounterACT releases.

The plugins listed above are installed and rolled back with the Network Module. Refer to the CounterACT Network Module Overview Guide for more module information, such as module requirements, upgrade and rollback instructions.

Additional CounterACT Documentation

For information about other CounterACT features and modules, refer to the following resources:

- Documentation Downloads
- Documentation Portal
- CounterACT Help Tools

Documentation Downloads

Documentation downloads can be accessed from one of two ForeScout portals, depending on which licensing mode your deployment is using.

- **Per-Appliance Licensing Mode** - Product Updates Portal
- **Centralized Licensing Mode** - Customer Portal

Software downloads are also available from these portals.

To learn which licensing mode your deployment is using, see Identifying Your Licensing Mode in the Console.

Product Updates Portal

The Product Updates Portal provides links to CounterACT version releases, Base and Content Modules, and Extended Modules, as well as related documentation. The portal also provides a variety of additional documentation.

To access the Product Updates Portal:

2. Select the CounterACT version you want to discover.

Customer Portal
The Downloads page on the ForeScout Customer Portal provides links to purchased CounterACT version releases, Base and Content Modules, and Extended Modules, as well as related documentation. Software and related documentation will only appear on the Downloads page if you have a license entitlement for the software. The Documentation page on the portal provides a variety of additional documentation.

To access documentation on the ForeScout Customer Portal:
2. Select Downloads or Documentation.

Documentation Portal
The ForeScout Documentation Portal is a searchable, web-based library containing information about CounterACT tools, features, functionality and integrations.

If your deployment is using Centralized Licensing Mode, you may not have credentials to access this portal.

To access the Documentation Portal:
2. Use your customer support credentials to log in.
3. Select the CounterACT version you want to discover.

CounterACT Help Tools
Access information directly from the CounterACT Console.

Console Help Buttons
Use context sensitive Help buttons to quickly access information about the tasks and topics you are working with.

CounterACT Administration Guide
Select CounterACT Help from the Help menu.

Plugin Help Files
1. After the plugin is installed, select Options from the Tools menu and then select Modules.
2. Select the plugin and then select Help.

Documentation Portal
Select Documentation Portal from the Help menu.
Identifying Your Licensing Mode in the Console

If your Enterprise Manager has a ForeScout CounterACT See license listed in the Console, your deployment is operating in Centralized Licensing Mode. If not, your deployment is operating in Per-Appliance Licensing Mode.

Select **Options > Licenses** to see whether you have a ForeScout CounterACT See license listed in the table.

Contact your ForeScout representative if you have any questions about identifying your licensing mode.
Legal Notice

© 2018 ForeScout Technologies, Inc. All rights reserved. ForeScout Technologies, Inc. is a Delaware corporation. A list of our trademarks and patents can be found at https://www.forescout.com/company/legal/intellectual-property-patents-trademarks. Other brands, products, or service names may be trademarks or service marks of their respective owners.

2018-07-30 19:16