Table of Contents

About the Switch Plugin
- Plugin Architecture ... 5
- Communication between the Switch Plugin and Switches 6
- Multi-Process Switch Plugin Architecture 6
- Supported Vendors ... 7
 - Switch Vendors .. 7
 - Layer 3 Device Vendors ... 7
- VoIP Support ... 7
- Treatment of Switch Trunk Ports ... 8
- Requirements ... 9
 - CounterACT Version Requirements 9
 - SNMP Requirements .. 9
- Getting Started .. 10

Configuring Switches in the Switch Plugin
- Manage Switch Configurations .. 11
- Switch Pane Toolbar ... 12
- Plugin Switch Management Using the Generic Vendor Option 13
- Plugin Management of Layer 3 Devices 13
- Add Switches to the Switch Plugin .. 14
 - General Configuration ... 15
 - CLI Configuration ... 17
 - SNMP Configuration .. 20
 - Permissions Configuration .. 21
 - ACL Configuration – Cisco and Brocade/Foundry Switches 34
 - ACL Configuration – Enterasys Matrix N-Series Switches 38
 - ACL Configuration – Juniper Switches 40
 - Security Group Tagging Configuration 42
 - 802.1X Integration Tab .. 43
- Global Configuration Options for the Switch Plugin 44
- Edit Switch Configurations in the Plugin 52
 - Editing Multiple Switches .. 53
- Test the Switch Configuration .. 55
 - Running the Test ... 56
 - Test Failure Scenarios .. 56
- View Managed Switch Information ... 60
 - Switch Pane Display ... 60
- Replicate Switch Configuration .. 65
 - Duplicate Existing Switch Configuration 65
 - Use Switch Configuration as a Template 66
- Auto-Discovery – Discover Neighboring Switches 67
 - Notification of Auto-Discovered Switches 70
- Non-Switch Devices ... 70
- Duplicate Switch Restrictions ... 71
Working with Switch Information at the CounterACT Console 71
 Viewing Switch Information in the Detections Pane 72
 View Information in the Profile Tab ... 73
CounterACT Policies ... 75
Switch Properties ... 75
Restrict Actions ... 80
Remediate Actions .. 88
Detect and Ignore Switch Virtual Interfaces 90
Clear ACLs from All Switch Ports ... 91

Switch Setup ... 93
 Configuring Cisco Switches for SNMPv3 ... 93
 Define the Group Configuration .. 93
 Define the User Configuration ... 94
 Define the View Configuration .. 94
 Configuring H3C Switches for SNMP .. 94
 Configuring Huawei Switches ... 94
 Configuring NETCONF on Juniper EX Series Switches 95
 Configuring MAC Notification Traps on Cisco Switches 95
 Configuring MAC Notification Traps – Configuration from Counte
 Configuring MAC Notification Traps – Configuration from the Switch. 97
 Configuring Switches for ACL Integration 98
 Layer 3 Switch Support for ACL .. 99

Appendix 1: See and Control Capabilities Summary 100

Appendix 2: Troubleshooting, Workarounds and Feature Functionality
 Support ... 103
 Troubleshooting .. 103
 Plugin VoIP Detection for Cisco Trunk Port Configuration Exception .. 103
 Configuration Flags for Workarounds ... 104
 Disable Reporting of Last Trap Received 104
 Control the Update Frequency of Number of MACs Found 105
 Support for Handling Multiple Entries for Same MAC 106
 Support for VoIP for Enterasys Switches 107
 Ignore Untagged Ports on Avaya (Nortel) Switches 107
 Pad MAC Addresses Missing Any Leading Zeros 108
 Ignore Link Down Traps After Assign to VLAN Action 109
 Configuration Flags Supporting Plugin Functionality 110
 cli_hybrid_port_bounce_poe ... 110

Appendix 3: Setting Up a VLAN ... 112

Appendix 4: MIBs Used by the Switch Plugin 113
Appendix 5: Using Network Device Compliance Policies 119
 How It Works ... 120
 Prerequisites for Network Device Compliance Property Use 121
 Define User with Privileged Permissions ... 121
 Configure the Plugin .. 121
 Activate the cdm Configuration Flag .. 123
 Tuning ... 124
 Filter Resolved Running Config Information 124
 Adjust the Device Properties Query Rate .. 126

Appendix 6: Working with ACL Capabilities .. 127
 About ACL Capabilities .. 127
 Access Port ACL Capability ... 127
 Endpoint Address ACL: IP Address Blocking Capability 128
 Endpoint Address ACL: MAC Address Blocking Capability 129
 Identifying Supported ACL Blocking .. 129
 Switch Vendor ACL Support ... 130
 What to Do .. 132

Appendix 7: Improve Switch Management for Large Deployments 134
 Multi-Process Switch Plugin Architecture .. 134
 Number of Sub-Processes to Run ... 134
 Deploy Plugin Multi-Process Operation .. 135
 Engineer Appliance Management Processing Load 135
 Enable Hyper-thread Mode in the Appliance BIOS 136
 Enable Multi-Process Operation for the Plugin 137
 Determining the Number of Sub-Processes to Run 138
 Plugin Multi-Process Operation Post-Upgrade 138
 Administer Plugin Multi-Process Operation per Appliance 139
 Disable Multi-Process Operation of the Switch Plugin for an Appliance 139
 Force Appliance Use of the Switch Plugin Configured Settings 139

Additional CounterACT Documentation .. 140
 Documentation Portal .. 140
 Customer Support Portal .. 140
 CounterACT Console Online Help Tools .. 140
About the Switch Plugin

The ForeScout CounterACT® Switch Plugin provides a powerful set of features, letting you:

- Track the location of endpoints connected to network switches and retrieve relevant switch information. For example, you can see the IP address and port of the switch to which an endpoint is connected.
- Quickly detect new endpoints on the network; the Switch Plugin receives notification of port status changes via SNMP traps and alerts the CounterACT Console.
- Assign switch ports to VLANs; you can set up dynamic, role-based VLAN assignment policies and quarantine VLANs.
- Use ACLs to open or close network zones, services or protocols for specific endpoints at a switch and handle scenarios that address broader access control.

Plugin Architecture

Single Appliance Solution

If you are working with a single Appliance, the plugin communicates with switches via the Appliance.

Multiple Appliance Solutions

If your CounterACT solution includes multiple Appliances connected to an Enterprise Manager, by default, the plugin communicates with switches via the Enterprise Manager.

You can change this setting, on a per-switch basis, to enable an Appliance that is physically closer to the switch to communicate with the switch (recommended).
If an Appliance is removed from CounterACT, all switches managed via this Appliance are reassigned to be managed via the Enterprise Manager. If an Appliance is disconnected, switches must be reassigned manually.

Communication between the Switch Plugin and Switches

The Switch Plugin queries each switch for:

- Switch port attributes and information about connected endpoints
- Its ARP table to discover new endpoints connected to the switch

Switch information can be transferred using either SNMP, CLI or both. The transfer method(s) used between the plugin and a managed switch is (are) specific to each switch vendor.

Multi-Process Switch Plugin Architecture

When CounterACT manages a large switch deployment containing many L2/L3 switches, implementing a multi-process Switch Plugin architecture significantly increases CounterACT’s real-time switch management capacity.

In a multi-process architecture, the Switch Plugin initiates and sustains several processes simultaneously. A high-level parent process communicates between individual switch-management child processes and the CounterACT infrastructure. This architecture allows numerous switch management sessions to run concurrently, multiplying the capacity of the Switch Plugin as compared with single-process versions of the Switch Plugin. For details about implementing a multi-process Switch Plugin architecture, see Appendix 7: Improve Switch Management for Large Deployments.
Supported Vendors

The Switch Plugin manages the network devices of a broad range of vendors. The following network device types can be managed by the plugin:

- **Switch**
- **Layer 3**

Switch Vendors

The Switch Plugin manages the switches of the following vendors:

- 3COM
- Alaxala
- Alcatel
- Apresia
- Arista
- Avaya (Nortel)
- Brocade/Foundry
- Cisco
- Comtec
- D-Link
- DASAN
- Dax
- Dell
- Enterasys
- Extreme
- Force10
- H3C
- Hirschmann
- HPE
- Huawei
- Juniper
- Linksys
- NEC

For detailed information about specific, switch vendor models and operating system versions that are validated for Switch Plugin management, reference the CounterACT Network Devices Compatibility Matrix, which is available on the ForeScout customer support portal.

Layer 3 Device Vendors

The Switch Plugin manages the firewalls of the following vendors:

- Check Point
- Cisco ASA
- Forcepoint Stonesoft
- Fortinet
- Juniper SRX
- Palo Alto Networks

The plugin also manages routers that run the Linux operating system.

For details about the limit of plugin management of Layer 3 devices, see Plugin Management of Layer 3 Devices.

VoIP Support

The Switch Plugin lets you perform Assign to VLAN and Switch Block actions in a VoIP environment. VoIP is supported for the following devices:

- 3COM switches
- Alcatel switches
 - VoIP detection is supported for phones connected to ports that are each configured with two static VLANs and the phone tags its own traffic with the voice VLAN.
 - VoIP detection is supported for phones connected to mobile ports. Such ports are configured for dynamic VLAN assignment, where VoIP traffic is dynamically moved to the voice VLAN by the switch.
- Avaya (Nortel) switches
- Brocade/Foundry switches
Cisco switches and phones
- For managed Cisco switches, (1) VoIP detection is supported for phones connected to either access ports or trunk ports. (2) All potential switch ports (access and trunk) must have voice VLANs that are configured using `switchport voice vlan <n>`.
- For managed Cisco Small Business 300 Series switches, (1) VoIP detection is supported for phones connected to either general ports or trunk ports and only when the `Auto Smartport detection` property is enabled on the switch. (2) All potential switch ports (general and trunk) must have voice VLANs that are configured using `switchport voice vlan <n>`.

For exceptional situations in which the potential Cisco trunk ports cannot have their voice VLANs configured using `switchport voice vlan <n>`, the Switch Plugin can still provide VoIP detection for these trunk ports, see Troubleshooting, Plugin VoIP Detection for Cisco Trunk Port Configuration Exception.

Enterasys switches

Force10 switches

H3C switches

- VoIP detection is supported for phones connected to H3C trunk ports and H3C hybrid ports.

HPE switches

Juniper EX series switches

The `Switch Port Voice Device` property is used to resolve whether a detected endpoint, connected to a switch port, is a VoIP device.

See Global Configuration Options for the Switch Plugin for more general information about working with VoIP devices.

Treatment of Switch Trunk Ports

In general, Switch Plugin processing ignores trunk ports as part of its management of a switch. Since a typical use of trunk ports is to connect between switches, the plugin does not want to detect endpoints or apply policy actions on endpoints that are connected to another switch that is connected to the managed switch via a trunk port.

Switch Plugin processing handles switch trunk ports for the following purposes:

- VoIP Support:
 - VoIP detection is supported for phones connected to Cisco trunk ports.
 - VoIP detection is supported for phones connected to H3C trunk ports.
 - Application of the `Assign to VLAN` action and the `Switch Block` action on detected endpoints located behind a VoIP device that is connected to a trunk port of either a Cisco switch or an H3C switch.
Plugin Configuration for ACL Application on Cisco, Brocade/Foundry Switches, Enterasys Matrix N-Series Switches and Juniper Switches:

- The **Block hosts learned via downstream devices** option. This option is used with the *Endpoint Address ACL* action. Enable or disable the blocking of endpoints on the access port or, if not found on the access port, on a *trunk port*.

Requirements

This section describes:

- **CounterACT Version Requirements**
- **SNMP Requirements**

CounterACT Version Requirements

CounterACT version 7.0.0:

- Hotfix 1.7.1 or above
- Install Service Pack 2.2.0.1 or above if you want to use the direct inter-Appliance communication infrastructure for the forwarding of SNMP traps to the target Switch Plugin running on the relevant Appliance. See [Direct Inter-Appliance Communication Infrastructure Requirements](#).

It is recommended to install the latest service pack to take advantage of the most current CounterACT updates.

SNMP Requirements

SNMP is the primary method used by the plugin to manage switches. The Switch Plugin supports use of the following SNMP versions:

- SNMPv1
- SNMPv2c
- SNMPv3

When the plugin manages Cisco switches running version IOS 12.1 or below, if the plugin is configured to manage these switches using SNMPv3, make sure that the plugin is also configured to use CLI with these switches.

Plugin receives SNMP traps on port 162. In addition, both standard and vendor-specific switch MIBs may be queried.
Direct Inter-Appliance Communication Infrastructure Requirements

The plugin uses direct inter-Appliance communication infrastructure to forward SNMP traps to the target Switch Plugin running on the relevant Appliance. This infrastructure provides for direct communication between Appliances.

In order for the plugin to use the inter-Appliance communication infrastructure to forward SNMP traps, the involved Appliances, which host either the sending or the target Switch Plugin, are required to be running CounterACT version 7.0.0 with Service Pack 2.2.0.1 or above. Refer to the CounterACT 7.0.0 Service Pack 2.2.0.1 Release Notes for the complete list of requirements for the feature Direct Inter-Appliance Communication.

For information about enabling plugin handling of SNMP traps and plugin forwarding of SNMP traps, see Handle SNMP Traps.

MIB Requirements

Appendix 4: MIBs Used by the Switch Plugin lists MIBs that should be included on the switch.

Getting Started

The Switch Plugin is bundled with your CounterACT software.

To work with the Switch Plugin, you will need to perform some or all of the following steps:

1. Start the Switch Plugin.

 This is only necessary if you did not add any switches in the (CounterACT) Initial Setup wizard.

2. Configure switches so that they can work with the Switch Plugin. See Switch Setup.

3. If you need the plugin to manage a switch whose switch vendor is not found in the Switch Vendors list, see Plugin Switch Management Using the Generic Vendor Option for details and then continue with step 5.

4. If you need the plugin to manage a Layer 3 device, verify plugin management of that device in the Layer 3 Device Vendors and see Plugin Management of Layer 3 Devices and then continue with step 5.

5. Add switches to the Switch Plugin. See Add Switches to the Switch Plugin.

6. Configure switches that were discovered automatically. See Auto-Discovery – Discover Neighboring Switches.

7. Test each switch configuration (recommended). See Test the Switch Configuration.

8. Configure the plugin options. See Global Configuration Options for the Switch Plugin.
Configuring Switches in the Switch Plugin

Configuration tools let you specify which of your switches are managed by the plugin. These tools also let you control specific tasks performed by the plugin, for example, you can enable or disable the option to query switches for connected endpoints and port attributes.

Once a switch is configured, the CounterACT device that is managing the switch retrieves information about endpoints connected to the switch and about the switch. Information about the switch includes, for example, the port at which the endpoint is connected, the switch port status and the switch IP address. You can view this information at the Console when an endpoint connected to the switch is detected by the Switch Plugin. Refer to the Working at the Console chapter of the CounterACT Console User Manual for information about working with the Console.

By default, the Enterprise Manager is responsible for communicating with all switches. You can change this on a per-switch basis so that, for example, an Appliance that is physically closer to a switch performs this task (recommended).

Advanced tools let you carry out performance tuning—for example, you can:

- Define ports that should never be blocked
- Change the default timeout and retry number for SNMP requests sent to the switch
- Change various default query rates

Manage Switch Configurations

Plugin configuration definitions for the network devices that the plugin manages - switches, firewalls and Linux routers - display in the Console Switch pane. View switch configuration details, switch information learned/discovered by the plugin, real-time information regarding plugin activity and switch status.

To display the Console Switch pane:

1. In the CounterACT Console, select Options from the Tools menu. The Options window opens.
2. Navigate to and select the Switch option. The Switch pane opens.
Use the tools in this pane to add and manage switches and to review and test their configurations.

Switch Pane Toolbar

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add...</td>
<td>Add a switch to the plugin.</td>
</tr>
</tbody>
</table>
| [Edit...](#) | Edit a switch configuration. See [Edit Switch Configurations in the Plugin](#) for information about this feature.
You can edit the configuration of multiple switches, provided that all selected switches are from the same vendor. |
| [Remove](#) | Disconnect selected switches from the Switch Plugin. Actions carried out from this switch remain enabled. Switch discovery and endpoint learning are stopped. |
| [Duplicate ..](#) | Duplicate a switch configuration. See [Duplicate Existing Switch](#) for information about this feature. |
| [Discover](#) | Run the auto-discovery feature. If the switch vendor does not support auto-discovery (or the switch is not Enabled), the button is disabled.
See [Auto-Discovery – Discover Neighboring Switches](#) for information about this feature. |
| [Stop All](#) | Halt Switch Plugin functionality on all CounterACT devices. This includes:
- Clear Assign to VLAN action, Switch Block action and any ACL actions. All related information, which the plugin placed on a configured switch in support of any of these actions, is removed.
- Stop switch discovery capabilities.
- Stop learning endpoint attributes. |
| [Approve](#) | Enable auto-discovered switches. The switch status first changes from Newly Discovered to Disabled. The status is updated to ✅ (Enabled) when read and write permissions are successfully assigned. |
| [Test](#) | Check switch connectivity and read and write access permissions. See [Test the Switch Configuration](#) for information about this feature. |
| [Export](#) | Export the current configuration of selected switches to an XML file. You must encrypt the exported file.
[Import/Export Password](#) The Switch configuration contains sensitive data. Enter a password that will be used to encrypt this data.
Password:
Confirm Password:
[OK] [Cancel] |
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Import</td>
<td>Import switch configurations from an XML file. Enter the password used when the switch configurations were exported to decrypt the file.</td>
</tr>
<tr>
<td></td>
<td>Import/Export Password
File test.xml contains password protected data.
Enter the password in the box below.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Options ...</td>
<td>Edit Switch Plugin options that apply to all managed switches. See Global Configuration Options for the Switch Plugin for information about these options.</td>
</tr>
</tbody>
</table>

Plugin Switch Management Using the Generic Vendor Option

If your switch vendor does not appear in the Switch Vendors list, try using the vendor option *Generic* to configure the Switch Plugin to manage the relevant switches. In Switch Plugin terminology, when the plugin is configured to manage a switch using the *Generic* vendor option, that switch is called a *generic switch*.

The plugin manages generic switches using only SNMP.

Only the following switch actions are available for use with managed, generic switches:

- *Switch Block* action (restrict action)
- *Expedite IP Discovery* action (remediate action)

When configuring the plugin to manage a generic switch, the necessary information and procedures are provided in section [Add Switches to the Switch Plugin](#).

Plugin Management of Layer 3 Devices

Configure the Switch Plugin to manage the following Layer 3 devices:

- Firewalls from the following vendors:
 - Check Point
 - Cisco ASA
 - Forcepoint Stonesoft
 - Fortinet
 - Juniper SRX
 - Palo Alto Networks
- Routers that run the Linux operating system (Linux routers)
Plugin management of Layer 3 devices provides the following:

- For all vendor firewalls, the plugin reads their ARP table. For the Fortinet firewall, this includes the plugin working with the firewall's Virtual Domain (VDOM) configuration. ARP table reading is used by the plugin for ARP learning - IP address to MAC address mapping information. Plugin ability to obtain this firewall information is important in order to address the following NAC scenario:

 The network infrastructure of the organization uses switches that only provide layer 2 functionality and layer 3 functionality is provided by firewalls.

- For the Juniper SRX firewall, the plugin also writes to its ARP table. ARP table writing is used by the plugin to clear redundant IP addresses to MAC address entries from the firewall's ARP table.

- For Linux routers, the plugin reads their ARP table. ARP table reading is used by the plugin for ARP learning - IP address to MAC address mapping information.

The plugin uses only CLI and an SSH connection to manage Layer 3 devices. Only the following switch action is available for use with managed Layer 3 devices:

- Expedite IP Discovery action (remediate action)

When configuring the plugin to manage a Layer 3 device, the necessary information and procedures are provided in section Add Switches to the Switch Plugin.

Add Switches to the Switch Plugin

This section describes how to add switches to the Switch Plugin and configure them.

Additional configuration is required when working with:

- SNMPv3 or CLI on Cisco switches. See Configuring Cisco Switches for SNMPv3.
- ACLs. See either ACL Configuration – Cisco and Brocade/Foundry Switches or ACL Configuration – Enterasys Matrix N-Series Switches.
- Juniper EX series switches. See Configuring NETCONF on Juniper EX Series Switches.

You can also configure a single switch and then rely on the Switch Plugin auto-discovery feature to detect neighboring switches. Enable auto-discovery on newly-discovered switches which can then discover their neighbors. For details, see Auto-Discovery – Discover Neighboring Switches.

To add a new switch:

1. Select Options from the Tools menu. The CounterACT Options window opens.

2. Select Switch. The Switch pane opens.
3. Select Add. The Add Switch wizard opens displaying the General page.

4. In each page of the wizard, enter any required information and then select Next. The subsequent pages of the wizard depend on the value chosen for Vendor in the General page.

5. In the last page of the wizard, select Finish. The new switch is added to the list of switches in the Switch pane. The switch has a status of Disabled.

6. Select Apply to add the switch to the Switch Plugin.

General Configuration

Use the General page of the Add Switch wizard to enter general switch information.
Address
Enter the IP address of the switch.

Switches often have more than one IP address (for example, Layer 3 switches). When you add a new switch to the plugin, only a single IP address can be configured. The Switch Plugin learns the other IP addresses automatically and reports them to the CounterACT Console which displays them in the IP Interface Addresses column of the Switch pane.

Connecting Appliance
Specify the CounterACT device that will manage this switch. In a multi-Appliance system, you should configure each switch to communicate via the Appliance closest to it.

If you intend to run policies that use the switch properties Running Config or Interface Table (for determining network device compliance), it is recommended that the Connecting Appliance contains the IP address of this switch in its Appliance IP Assignment range. Doing this helps ensure consistent compliance validation and saves network utilization. Refer to the CounterACT Console User Manual for information about Appliance IP Assignment.

Vendor
From the dropdown menu, select the vendor of the network device you want the plugin to manage.

- Switch management: Either select a specific switch vendor or select the Generic option to configure the plugin to manage the switch using the generic vendor option (for switch vendors not appearing in the Switch Vendors list).
 - For plugin management of an HPE switch running a ProVision/ProCurve operating system, select the vendor option HP.
 - For plugin management of an HPE switch running a Comware operating system, select the vendor option HPE-Comware.

- If the plugin is currently configured to manage an HPE switch, which runs either Comware operating system version 5.x or version 7.x, as an H3C switch (the Vendor field is configured with H3C), it is recommended to delete the existing plugin configuration for managing this switch and configure it anew using the vendor option HPE-Comware.

- Firewall management: Select a specific firewall vendor (listed in the dropdown menu as <vendor name>-FW).

- Linux Router management: Select the Router-Linux option.

Comment
Enter comments about the switch configuration.

Use switch configuration as template
Select this checkbox to instruct the Switch Plugin to copy the plugin configuration for managing this switch to newly detected, unmanaged switches that belong to the same SNMP community. This option is not available for use if Juniper is defined in the Vendor field.
For more information, see Use Switch Configuration as a Template in the Replicate Switch Configuration section.

CLI Configuration

Use the **CLI** configuration page of the Add Switch wizard to specify whether to enable use of the CLI for communication from the Switch Plugin to the switch. CLI settings are described in this section.

*When configuring the Switch Plugin to manage a Cisco Small Business 300 Series switch, do not enable **Use CLI**. The plugin interoperates with these switches using SNMP only.*

The plugin does not support applying ACL actions on the Cisco Small Business 300 series switch, since ACL support requires plugin-switch CLI interoperation.

CLI parameters **must** be configured for the plugin to manage the following network devices:

- Layer 3 devices - all supported vendor firewalls and Linux routers
- Alaxala switches
- Arista switches
- Cisco switches in order for Switch Plugin detection of VoIP port configuration on Cisco switch ports. For an additional configuration requirement for plugin-provided detection of VoIP port configuration, see MAC Read/Write Method.

This requirement is not relevant for managed Cisco Small Business 300 Series switches.
- Cisco Catalyst 2950 switches using SNMPv3
- Cisco ISR routers
- Cisco Nexus switches
- HPE-Comware
- Juniper switches

CLI parameters can be configured for the plugin to manage the following network devices:

- 3COM switches in order to apply the Assign to VLAN action on detected endpoints connected to a 3COM hybrid port.

- Brocade/Foundry and Enterasys Matrix N-Series switches in order to apply ACL actions (Endpoint Address ACL and Access Port ACL) on detected endpoints that are connected to these switches.

- Cisco switches in order to:
 - Use the Set port alias on action option on the switch. See Switch Advanced Settings for details about this option.
 - Apply ACL actions (Endpoint Address ACL and Access Port ACL) on detected endpoints that are connected to these switches.
 - Apply the Assign Security Group Tag action on the switch.

- Comtec switches in order to:
 - Apply the Assign to VLAN action on detected endpoints that are connected to these switches.
 - Use the ARP Permissions option Write - Clear redundant IP addresses associated with MAC (Refresh ARP table).

- DASAN switches in order to:
 - Apply the Assign to VLAN action on detected endpoints that are connected to these switches.
 - Use the ARP Permissions option Write - Clear redundant IP addresses associated with MAC (Refresh ARP table).

- ExtremeXOS switches in order to apply the Assign to VLAN action on detected endpoints that are connected to these switches.

- H3C switches in order to apply the Assign to VLAN action on detected endpoints; endpoints that are connected to H3C switches as follows:
 - On detected endpoints located behind a VoIP device that is connected to an H3C trunk port.
 - On detected endpoints connected to an H3C access port or an H3C hybrid port.

- Huawei switches in order to apply the Assign to VLAN action on detected endpoints that are connected to these switches.

To add CLI information:

1. Select **Use CLI** to activate CLI access.
 - When configuring the Switch Plugin to manage a Cisco Small Business 300 Series switch, do not select **Use CLI**. The plugin interoperates with the 300 series switch using SNMP only.
When configuring the Switch Plugin to manage either a Juniper switch or a Layer 3 device (a supported vendor firewall or a Linux router), **Use CLI** is permanently selected (cannot be cleared); SNMP is not available for communication between the Switch Plugin and these network devices.

When configuring the Switch Plugin to manage an Arista switch, **Use CLI** is permanently selected (cannot be cleared).

2. In the **Connection Type** field, select the connection type that you want to use to enable communication from the Switch Plugin to the switch. When configuring the Switch Plugin to manage either a Juniper switch or a Layer 3 device (a supported vendor firewall or a Linux router), **SSH** is the permanently selected connection type.

3. Type a user name and password used to log in to the switch and confirm the password.

4. If you do not want to grant the plugin write privileges on the switch, clear the **Enable privileged access** option in the Privileged Access Parameters section. Continue with step 6.

 For managing Check Point-FW Layer 3 devices, never disable the **Enable privileged access** option (option is enabled by default). The enabled option instructs the plugin to interoperate in expert mode with the Check Point firewall.

5. In the **Privileged Access Parameters** section, define privileged access credentials:
 - Select **No password** if the switch setup does not require a password.
 - Select **Use login parameters** if the user name and password entered at step 3 can also be used for privileged access.
 - Select **Custom** if privileged access requires a second user name and password pair, and type the user name and password.

6. In the **Router Module Number** section (**Enterasys only**):

 When the plugin uses a CLI connection with a managed Enterasys switch, then, following plugin log in to the switch and establishment of the CLI connection, the plugin must always then enable **router** mode on the switch, either with a provided router module number or without one.

 ![Router Module Number](image)

 This section provides the **Access using Router Module Number** checkbox and associated field, which are used to instruct the plugin regarding enabling **router** mode on the switch, as follows:

 - Clear the **Access using Router Module Number** checkbox to instruct the plugin to only send the **router** command, when enabling **router** mode on an Enterasys switch. By default, the **Access using Router Module Number** checkbox is not selected.
- Select the **Access using Router Module Number** checkbox to instruct the plugin to send the `router` command together with the value defined in the associated field, when enabling `router` mode on an Enterasys switch. The field’s default and minimum value is 1.

7. Select **Next**.

SNMP Configuration

Use the SNMP page of the Add Switch wizard to specify the SNMP version and to define the SNMP credentials the plugin must use with the switch. SNMP credentials must be defined for all switch vendors except Juniper and for plugin management of a generic switch (SNMP configuration is not relevant for plugin management of Layer 3 devices).

When SNMP is used by the plugin to interoperate with H3C switches, a switch configuration requirement might be applicable to the managed H3C switches. For details, see **Configuring H3C Switches for SNMP**.

SNMPv1 and SNMPv2c Configuration

If you are using the switch-as-template feature (see **Use Switch Configuration as a Template**), it is strongly recommended that you use a different community for each switch vendor.

For SNMPv1 or SNMPv2c, select the SNMP version from the **SNMP Version** drop-down list. In the **Community** field, type a community relevant to the SNMP version that you selected.
SNMPv3 Configuration

Additional configurations are required when working with SNMPv3 on Cisco switches. See Configuring Cisco Switches for SNMPv3 for details.

- SNMPv3 requires several items to be defined that are not required for earlier SNMP versions. Examples include: mib view, security group, username and password, authentication protocol, and privacy protocol. If these items are not defined, communication with switches may be affected. Refer to standard SNMPv3 documentation for more information.

- When using VLANs with Cisco switches, a VLAN context must be defined for the desired security group.

For SNMPv3, select **V3** from the **SNMP Version** drop-down list. Type a user name and enter any other required information.

Juniper Switches

SNMP queries are not supported for Juniper switches. SNMP can be used for port status (link-up/link-down) traps. No configuration is required to work with SNMPv1 or SNMPv2c. For SNMPv3 traps, enter any Juniper SNMPv3 settings to be used with the switch.

Permissions Configuration

Use the **Permissions** page of the Add Switch wizard to define read and write permissions and advanced permission settings.

For plugin management of a switch, whether by SNMP, CLI or a combination of both methods, make sure that the involved users have the necessary read and write permissions defined on the managed switch and defined for the plugin. For example, in the CLI page/tab, plugin CLI write permission requires both selection of the **Enable privileged access** option and definition of privileged access credentials.
Discovery Permissions

Read – Auto-discover additional switches (CDP, FDP, LLDP)

Enable or disable the auto-discovery feature to run periodically. See Auto-Discovery – Discover Neighboring Switches for more information about how this feature works.

By default, switches run auto-discovery every 10 minutes (600 seconds). To change this setting for the current switch, select Advanced to open the Switch Advanced Settings dialog box and change the value of the Auto-discover additional switches field.

If you are working with a switch that does not support auto-discovery, this field is disabled.

MAC Permissions

Enabling MAC read permission allows CounterACT to read a switch’s MAC table and thereby, can discover connected endpoints and their network interface. This ability supports CounterACT with applying plugin restrict actions to the relevant switch port.

Read – MACs connected to switch port and port properties (MAC address table)

Enable or disable the mechanism used by the plugin to query the switch for connected endpoints and port attributes.

By default, this information is queried once every 60 seconds. To change this setting for the current switch, select Advanced to open the Switch Advanced Settings dialog box and change the value of the Read MACs connected to switch port and port properties (MAC address table) field.
Write – Enable Actions (Switch Block, Assign to VLAN, ACL)

Enable or disable the Switch Plugin permission to apply the Assign to VLAN action, the Switch Block action and ACL actions on endpoints detected on the managed switch. See Restrict Actions for more information about Switch Plugin-provided actions.

Clearing the Write-Enable Actions checkbox while the any of these actions are currently applied on endpoints detected on the managed switch, results in the Switch Plugin releasing the affected endpoints from the applied action.

MAC Read/Write Method

For the plugin MAC read/write method used per network device vendor, see Appendix 1: See and Control Capabilities Summary.

When configuring (add/edit) the plugin to manage a Cisco switch, the MAC Read/Write Method field is available for use. From the drop-down list, select the method that the plugin uses to perform the following tasks when managing a Cisco switch:

- **Read:**
 - The MAC Address table
 - The switch properties, for example, ports, VLANs, aliases

- **Write:**
 - For applying the Assign to VLAN action
 - For applying the Switch Block action

The following read/write methods are available to select:

- **Automatic**
- **SNMP (RW)**
- **SNMP (RW) and CLI**
- **SNMP (RO) and CLI**
<table>
<thead>
<tr>
<th>Method</th>
<th>READ</th>
<th>WRITE</th>
<th>Notes</th>
</tr>
</thead>
</table>
| Automatic | ▪ SNMP | ▪ SNMP | 1. Read commands are performed using SNMP with the following exceptions:
 - Cisco ISR
 - Cisco IOS version 12.1 or below and the plugin is configured to use SNMPv3 to manage the switch
 2. When managing these switches, the majority of read commands are performed using SNMP and a minority of read commands are performed using CLI.
 3. Limitation: If this method is selected, the plugin cannot apply the Assign to VLAN action on Cisco 2950 switches running IOS version 12.1, due to this switch model's SNMP implementation. |
| SNMP (RW) | ▪ SNMP | ▪ SNMP | The limitation provided in method Automatic, note 3, also applies to this method. |
| SNMP (RW) and CLI | ▪ SNMP | ▪ SNMP | 1. The majority of read commands are performed using SNMP; a minority of read commands are performed using CLI.
 2. The limitation provided in method Automatic, note 3, also applies to this method. |
| SNMP (RO) and CLI | ▪ CLI | ▪ CLI | 1. The majority of read commands are performed using CLI; a minority of read commands are performed using SNMP.
 2. Select this method:
 - For plugin management of a Cisco Nexus (recommended)
 - When CLI is the preferred method for plugin application of the Assign to VLAN and the Switch Block actions |

Although a MAC Read/Write Method is not selected for plugin management of Arista switches, the plugin uses the SNMP (RO) and CLI method to perform reads on Arista switches.
Selecting either the **SNMP (RW) and CLI** method or the **SNMP (RO) and CLI** method is required for any of the following:

- The **Switch Port Configurations** property to be available.
- Switch Plugin detection of VoIP port configuration on Cisco switch ports. (This requirement is not relevant for managed Cisco Small Business 300 Series switches.)

ARP Permissions

The ARP table provides the association between IP addresses and MAC addresses. Enabling the **Read** option allows the plugin to read the ARP table of the managed network device. ARP table reading is used by the plugin for ARP learning - learning the IP address to MAC address mapping information of the managed network device. ARP table reading is available for all plugin-managed network devices (supported switches and supported Layer 3 devices).

For the plugin to query the Linux router ARP table, the configured user path on the Linux router must include the directory containing the `arp` command.

Enabling the **Write** option allows the plugin to write to the ARP table of the managed network device. ARP table writing is used by the plugin to clear redundant IP addresses to MAC address entries from the ARP table of the managed network device. ARP table writing is available for most plugin-managed network devices, as follows:

- Available for all supported switches, except HPE-Comware
- Not available for all supported Layer 3 devices, except Juniper SRX firewall

Read – IP to MAC mapping (ARP table)

If you select **Read – IP to MAC mapping (ARP table)**, the Switch Plugin discovers, each new endpoint that is added to the ARP table of a managed switch. Select this option if you are working in an environment where endpoints can only be learned via the Switch Plugin (for example, CounterACT channels have not been defined).

By default, the Switch Plugin queries the ARP table every 10 minutes (600 seconds). To change this setting for the current switch, select **Advanced** to open the Switch Advanced Settings dialog box and change the value of the **Read IP to MAC mapping (ARP table)** field.

When CLI is the method selected to read the ARP table of a managed Cisco or Enterasys switch, the plugin learns additional ARP table information, specifically, the age of ARP table entries. With this information, the plugin can ignore redundant IP addresses associated with the same MAC address.

For the plugin ARP read method used per network device vendor, see **Appendix 1: See and Control Capabilities Summary**.

ARP Read Method

When configuring (add/edit) the plugin to manage an Enterasys switch, the **ARP Read Method** drop-down list is presented. Use this drop-down list to define the method that the plugin uses to read the ARP table of the Enterasys switch.

When the **Read – IP to MAC mapping (ARP table)** checkbox is selected, then the **ARP Read Method** drop-down list is available for use.
The following read methods are available to select:

- **SNMP** - the default selection. Instructs the plugin to use SNMP to query the switch ARP table.
- **CLI** - instructs the plugin to use CLI commands to query the switch ARP table.

Write – Clear redundant IP addresses associated with MAC (Refresh ARP table)

The IP address of an endpoint can change (for example, if the endpoint is moved from one VLAN to another). When an endpoint IP address changes, the old IP address is still associated with the endpoint MAC address in the ARP table, and the Switch Plugin may then learn the old IP address of the endpoint.

Selecting the **Write – Clear redundant IP addresses associated with MAC (Refresh ARP table)** option instructs the plugin to periodically delete redundant IP addresses from the ARP table, which is then followed by a plugin read of the ARP table to discover the current IP address associated with the MAC.

Clearing redundant IP addresses from the ARP table of a managed switch occurs, following any of these events:

- A plugin ARP table query, triggered by the **Read – IP to MAC mapping (ARP table)** option, that results in the discovery of more than one IP address for the same MAC address
- When the plugin knows that an IP address has become redundant, for example:
 - After applying the **Assign to VLAN** action, the **Endpoint Address ACL** action defined with the MAC ACL parameter or the **Switch Block** action
 - Upon a detected endpoint being deleted from CounterACT

The plugin uses either SNMP commands or CLI commands to clear redundant IP addresses from the ARP table of a managed switch. For the plugin ARP write method used per network device vendor, see **Appendix 1: See and Control Capabilities Summary**.

> With a managed Juniper switch, the plugin CLI clear the ARP table command is always followed by the plugin CLI commit command.

ARP Read/Write Method

When configuring (add/edit) the plugin to manage a Cisco switch and the **Read - IP to MAC mapping (ARP table)** option is selected, then the **ARP Read/Write Method** field is available for use. Select a drop-down list entry to define the method that the plugin uses to read from/write to the ARP table of the Cisco switch.
The following read/write methods are available to select:

- **Automatic (Recommended)** - the default selection. Instructs the plugin to query the switch ARP table via CLI commands, when **Use CLI** is enabled in the CLI page. If **Use CLI** is not enabled, the plugin uses SNMP to query the switch ARP table.
- **SNMP** - instructs the plugin to use SNMP to query the switch ARP table.
- **CLI** - instructs the plugin to use CLI commands to query the switch ARP table.

For plugin management of a Cisco Small Business 300 Series switch, selecting the **Automatic (Recommended)** option is the same as selecting the **SNMP** option.

Switch Advanced Settings

Selecting **Advanced** in the Permissions page opens the **Switch Advanced Settings** window. This section describes the advanced settings for plugin management of a switch that are available to configure in this window.

The available settings are vendor specific and are based on the **Vendor** field selection that was made in the General page/tab. Not all of the settings (fields and options) described in this section are available for use with every supported vendor, whether switch vendor or Layer 3 device vendor.
Performance Tuning

Use this section to update discovery frequencies.

Auto-discover additional switches

For a description of this performance tuning setting, see the Discovery Permissions section.

Read MACs connected to switch port and port properties

For a description of this performance tuning setting, see the MAC Permissions section.

Read IP to MAC ARP mapping

For a description of this performance tuning setting, see the ARP Permissions section.
Read IP to MAC mapping protection between subsequent queries
This performance tuning setting defines the minimum period, in seconds, that the Switch Plugin must always wait between subsequent ARP table queries of the network device. More specifically, this setting defines the minimum wait time between when the previous query ended and the new query is begun. The setting default is 30 seconds.

When SNMP is used to read IP to MAC mapping, refresh reported entries
This performance tuning setting defines how frequently the Switch Plugin must refresh the CounterACT device with the ARP table information of a previously known table entry. The ARP table of an L3-enabled network device records the association between IP address and MAC address of an endpoint connected to the device.

ARP Table OID
This setting is only displayed when configuring the plugin to manage a generic switch and is required to be configured. For purposes of SNMP communication with the switch, select the OID where the ARP table is found in the switch MIB.

Settings

SNMP parameters
Use this option to control the timeout and retry number for SNMP requests sent to the switch. You may need to do this to handle SNMP timeout problems. These problems may occur if the network or switch is extremely busy.

- **Timeout** – How long (in seconds) that the Switch Plugin waits for a response from the SNMP agent on the switch. The default timeout is 25 seconds.
- **Retry** – The number of times to retry sending an SNMP message to the endpoint. The default number of retries is 2. The maximum number of retries is 20.

For example, to indicate a timeout of 30 seconds and a maximum of three retries, type the following:

```
-t 30 -r 3
```

SSH parameters
The **SSH Parameters** field only appears for switch vendors that support CLI communication with the plugin. Use of this field is relevant when the plugin is configured to manage the switch using CLI via an SSH connection.

Provide any SSH parameters that you want included in the SSH client command line that the plugin executes when logging in to and establishing CLI communication with a managed switch.

Ignore actions on port names
Enter a comma-separated list of port names or numbers that should be ignored when applying the Switch Block, Assign to VLAN or ACL actions.

You can use regular expressions in this field.

If you already blocked endpoints on ports that you define here, those endpoints are released.
Ignore actions on port aliases

Enter a string in this field; ports on the switch whose alias field contains the specified string are ignored when applying the Switch Block, Assign to VLAN or ACL actions.

You can use a regular expression in this field.

If you already blocked endpoints on ports that you define here, those endpoints are released.

Don’t learn on port name

Enter port names or numbers at which endpoint learning should not take place. Enter a comma between each port name.

You can use regular expressions in this field.

Set port alias on action

This field is only displayed for Cisco switches. It is enabled only if Use CLI is enabled (in the CLI page) and Write – Enable Actions (Switch Block, Assign to VLAN, ACL) is selected in the MAC Permissions section of the Permissions page.

To use the option, you must select Enable privileged access in the CLI page, Privileged Access Parameters section. You must also configure the switch to allow privileged command-line access from the CounterACT device, see Configuring Switches for ACL Integration.

Specify whether information about the latest switch action performed on the port is prepended to the port alias field on the switch. This information can be retrieved by users responsible for the switch who do not have access to the CounterACT Console.

If no previous action of this type has been performed on the port, the information is prepended to the existing switch alias text. If a previous action of the same type was performed, the information about the current action overwrites the information about the previous action of the same type but leaves the remainder of the existing text intact.

The information added to the port alias text is formatted as follows:

Assign to VLAN action:

ACL actions:

Switch Block action:

- __CA:<Appliance_IP_address>:<timestamp>:B:act:NAC__

Assign port to the default VLAN:

- __CA:<Appliance_IP_address>:<timestamp>:V:<previous_VLAN_ID>-<default_VLAN_ID>:DEF:NAC__

Where <timestamp> has the format mm:dd:hh:mm:ss.
IP to MAC Mapping

Read – IP to MAC mapping (ARP table) for Layer 3 Switches

Implementing VRF

This option is displayed for Cisco and Alcatel switches.

For Cisco and Alcatel layer 3 switches that implement VRF, specify whether the plugin is to read the IP to MAC mapping from each VRF ARP table, in addition to reading the mapping from the ARP table.

To enable the checkbox Read - IP to MAC mapping (ARP table) for VRFs, make sure that both of the following items are configured:

- Use CLI is selected in the CLI page.
- Read – IP to MAC mapping (ARP table) is selected in the ARP Permissions section of the Permissions page.

Additionally, to activate this capability for Cisco switches, you must set the ARP Read/Write Method to either Automatic or CLI in the ARP Permissions section of the Permissions page.

Connectivity Groups

Enter Connectivity Group name(s). A Connectivity Group defines a group of adjacent network devices (any combination of L2 devices, L3-enabled devices, L2/L3-enabled devices). A network device can be assigned to any number of Connectivity Groups. Multiple group names must be comma-separated.

The Switch Plugin uses a Connectivity Group’s L3-enabled network devices that are configured to Allow IP Discovery from Connectivity Group, when carrying out the Expedite IP Discovery action. For information about this action, see Expedite IP Discovery.

Allow IP Discovery from Connectivity Group

Select this option when configuring an L3-enabled network device. This option lets the Switch Plugin query the L3-enabled device for ARP table data in support of other devices assigned to the same Connectivity Group, when carrying out the Expedite IP Discovery action. For information about this action, see Expedite IP Discovery.

Default VLAN

Default VLAN ID/Name

To assign ports to a default VLAN, select Default VLAN ID/Name and type the ID or name of the VLAN in the text box.

Default VLAN ID/Name is enabled only if Write – Enable Actions (Switch Block, Assign to VLAN, ACL) is selected in the MAC Permissions section of the Permissions page.

All ports on managed switches are assigned to the default VLAN, except:

- Trunk ports.
- CDP, FDP and LLDP ports.
- Ports that have more than a specified number of endpoints connected to the port. (This value is set in the Maximum assigned users per port to default VLAN field in the Edit general parameters dialog box. See Maximum assigned users per port to default VLAN for details.)
- Ports that have been assigned to a VLAN using the Assign to VLAN action.
- Switch ports that have been blocked by the Switch Block action.
- Ports that are excluded from actions by the Ignore actions on port names and Ignore actions on port aliases configurations. See Switch Advanced Settings for information about these configurations.

For additional control, you can modify:

- The maximum number of endpoints per port for the port to be assigned to the default VLAN. See Maximum assigned users per port to default VLAN for details.
- The time period to wait until the Switch Plugin tries to reassign a port to the default VLAN (if the assignment failed due to the number of endpoints connected to the port). See Time period to halt assignments to default VLAN (hours) for details.

Only assign vacant ports to default VLAN

To only assign vacant ports to the default VLAN, select Default VLAN ID/Name and then select Only assign vacant ports to default VLAN. Vacant ports include VoIP ports. This is useful if your policy dictates that an end-point must be inspected for compliance before it gets into a production VLAN (a pre-connect inspection). For example, in a conference room where it is likely that guest endpoints will frequently connect and reconnect, you can set up a guest VLAN, and set the Vacant Port assignment to that VLAN. A port is considered vacant if its operational status (link state) is down for more than 3.5 minutes.

Configuration Flags

Configuration flags

To enable per-switch advanced configuration features, type the relevant flag in this field.

- To enable a feature, type <property_name>:<value> in the field.
- To restore the feature to its default value, delete the string.
- Strings for different advanced features must be separated by a comma.
- Per-switch configuration of a flag always takes precedence over the global configuration of that flag.

Supported configuration flags are listed and explained in Appendix 2: Troubleshooting, Workarounds and Feature Functionality Support.

See also Advanced configuration flags for global advanced configuration features.

Assign to VLAN by Configuration Group – Juniper Switches Only

For Juniper EX switches, when working in environments with configuration groups, the plugin can assign a switch port to a configuration group, instead of assigning it to a VLAN. This capability enables CounterACT users to configure multiple groups on a switch, for example:

- a Guest_Group
- a Corporate_Group
In the switch, each defined configuration group must include VLAN. The Switch Plugin moves ports between VLANs by moving ports between configuration groups.

To enable the action, do the following:

- In the **Configuration Group** section of the Switch Advanced Settings window, select the **Assign to VLAN by Configuration Group assignment** checkbox.

To specify the configuration group to which the endpoint will be assigned, do the following:

- Enter the group name in the **VLAN name** field of the **Assign to VLAN** action.
NAT Layer 3 Translation

Detect and control endpoints that are behind NAT devices located on layer 3 switches. Include these hosts as part of your managed network. Using the NAT layer 3 translation option, translate host IPs learned by remote switches into to local addresses that can be used as part of the internal network range.

To configure NAT layer 3 translation, do the following:

1. In the NAT Layer 3 Translation area of the Switched Advanced Settings window, select the ARP translation checkbox and then select the button. The NAT Layer 3 Translation window opens.
2. In the window, select Add. The Add Subnet Masks dialog opens.
3. In the Source field of the dialog, specify a source range from the remote switch ARP table.
4. In the Target field of the dialog, specify a target range from your internal network.

ACL Configuration – Cisco and Brocade/Foundry Switches

In the ACL page of the Add Switch wizard, define the Switch Plugin ACL configuration for interoperation with either managed Cisco or managed Brocade/Foundry switches. The available options are described in the following sections.
When configuring the Switch Plugin to manage a Cisco Small Business 300 Series switch, **Use CLI** must be disabled in the CLI page, resulting in the ACL page being disabled for configuration. The plugin does not support applying ACL actions on the Cisco Small Business 300 series switch, since ACL support requires plugin-switch CLI interoperation and the plugin interoperates with the 300 series switch using SNMP only.

For details about the Switch Plugin ACL capabilities, see **Appendix 6: Working with ACL Capabilities**.

Enable ACL

Enable or disable ACL configuration defined on this page. This option must be enabled to use either Access Port ACL or Endpoint Address ACL (IP address-based ACL or MAC addressed-based ACL). For Access Port ACL, this is the only option to enable in the page.
Block hosts learned via downstream devices

This option is used with the Endpoint Address ACL action.

Enable or disable the blocking of endpoints on the access port or, if not found on the access port, on a trunk port. Enabling this option allows the Switch Plugin to apply the ACL to detected endpoints that reside on a downstream switch device that, for example, does not support ACL use. By default, this option is disabled.

Add ACL access group to physical ports

This option is used with the Endpoint Address ACL action.

By default, this option is enabled. When enabled, the Switch Plugin adds the relevant ACL rules to the switch access list and applies the ACL on endpoint-connected switch ports (access group is the ACL on a switch port).

When this option is disabled, the Switch Plugin only adds the relevant ACL rules to the switch access list; the plugin does not also apply the ACL on endpoint-connected switch ports (access group is the ACL on a switch port). In this case, the CounterACT user must then manually add the ACL to the appropriate switch port(s).

Keep ACL access group on ports after action canceled

This option is used with the Endpoint Address ACL action.

When this option is enabled, the Switch Plugin leaves an ACL, which was previously applied by an Endpoint Address ACL action, on its port after the action is cancelled for an endpoint (whether manually or by a policy). The ACL (access group) remains on the port until either the plugin is stopped or Switch Plugin garbage collection occurs. The plugin does remove the relevant ACL rules from the switch access list. By default, this option is disabled.

Operating in this manner, the plugin reduces the amount of CLI configuration changes in the switch that, in turn, yields a reduction in both CPU and memory usage of the switch.

IP ACL

This section defines the parameters used to support IP address blocking of detected endpoints, applied using the Endpoint Address ACL action.

Add CounterACT authentication servers permit rules

Do not clear this checkbox (this option is enabled by default). If you clear the checkbox, CounterACT may not have access to the blocked endpoints and configured authentication servers.

Use default ACL / Use custom ACL

Specify whether to use the default, CounterACT ACL (forescout_acl) or another ACL that you have created.
Enable basic ACL on action failure

Select this checkbox if the switch does not support ACL TCP flags (in which case attempting to apply an ACL action will not succeed) and you want the switch to trigger the basic ACL rules defined on this page when a CounterACT action is applied. In this case, only the rules listed in the **Specify basic ACL rules** text box are used—default rules are not added by the Switch Plugin and **Add CounterACT authentication servers permit rules** is ignored even if selected.

You must also select this option if the switch does not support ACL rule numbering and you want to use the basic ACL.

Specify basic ACL rules

(Enabled if **Enable basic ACL on action failure** is selected.) In the text box, type basic ACL rules to be used if your Switch does not support comprehensive ACL blocking. See [Endpoint Address ACL: IP Address Blocking Capability](#) for details. Enter rules based on your switch requirements. Sample commands are shown in the following table:

<table>
<thead>
<tr>
<th>Example Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deny ip host HOST_IP any</td>
<td>Block all IP traffic from the detected endpoint. When using this type of rule:</td>
</tr>
<tr>
<td></td>
<td>▪ Sessions to the endpoint will not be initiated because the endpoint will not return a SYN-ACK message.</td>
</tr>
<tr>
<td></td>
<td>▪ UDP traffic will not be transmitted from the endpoint.</td>
</tr>
<tr>
<td>Deny tcp host HOST_IP any</td>
<td>Block all TCP traffic from the detected endpoint. When using this rule, session to the endpoint will not be initiated because the endpoint will not return a SYN-ACK message.</td>
</tr>
<tr>
<td>Deny tcp host HOST_IP any eq 80</td>
<td>Block HTTP access from the detected endpoint. In this case one can block access to more than one port, but it must be in the same direction.</td>
</tr>
<tr>
<td>Deny tcp host HOST_IP any eq 23</td>
<td>Block Telnet access from the detected endpoint. In this case one can block access to more than one port, but it must be in the same direction.</td>
</tr>
<tr>
<td>Deny tcp host HOST_IP eq 3389 any</td>
<td>Block RDP (Remote Desktop Application) access to the detected endpoint. In this case one can block access to more than one port, but it must be in the same direction.</td>
</tr>
</tbody>
</table>
If rule numbering is not supported

The Switch Plugin provides the following IP ACL configuration options, should a managed switch not support the use of ACL rule sequence numbers:

- **Use the ACL without rule numbering** - Every addition or cancellation of ACL rule(s) requires the switch to re-write its entire ACL list, due to it not using ACL rule sequence numbers. Switch re-write of its ACL list can affect the CPU utilization (high), depending upon re-write frequency and ACL list size.

- **Use basic ACL settings on action failure** - selecting this option instructs the plugin to add to the ACL list on the switch, the ACL rule(s) defined in the **Specify basic ACL rules** box, whenever the plugin fails to apply the Endpoint Address ACL action.

When this option is selected, the following ACL pane/tab configuration for the managed switch is also required:

- The **Enable basic ACL on action failure** option must also be selected.
- In the **Specify basic ACL rules** box, a minimum of one ACL rule must be defined.

\[When \text{defining the Endpoint Address ACL action, the option Use Basic ACL on action failure option must be selected.} \]

MAC ACL

This section defines the parameters used to support MAC address blocking of detected endpoints, applied using the Endpoint Address ACL action. When a MAC ACL is applied, the switch blocks all traffic sent from the affected, endpoint MAC address. The **MAC ACL** section is displayed for Cisco switches only.

Enable MAC ACL

Enable or disable working with the MAC ACL on this switch. MAC ACL blocking enables blocking of endpoints based on their MAC address. Traffic from the endpoint to the switch is blocked.

In the textbox, type the name of the ACL as it appears in the switch. MAC ACL blocking is not supported when the endpoint’s switch port is defined with both an IP and MAC ACL or if you are working with a Cisco 2950 switch that is limited to Standard Image (SI) support. Make sure that the MAC ACL name is different from the IP ACL name, if you are using both features.

ACL Configuration – Enterasys Matrix N-Series Switches

In the ACL page of the Add Switch wizard, define the Switch Plugin ACL configuration for interoperation with managed Enterasys Matrix N-Series switches. The available options are described in the following sections.

For details about the Switch Plugin ACL capabilities, see Appendix 6: Working with ACL Capabilities.
Enable ACL

Enable or disable the Endpoint Address ACL (IP address-based ACL) configuration defined on this page.

Block hosts learned via downstream devices

This option is used with the Endpoint Address ACL action.

Enable or disable the blocking of endpoints on the access port or, if not found on the access port, on a trunk port. Enabling this option allows the Switch Plugin to apply the ACL to detected endpoints that reside on a downstream switch device that, for example, does not support ACL use. By default, this option is disabled.

Add ACL access group to physical ports

This option is used with the Endpoint Address ACL action.

By default, this option is enabled. When enabled, the Switch Plugin adds the relevant ACL rules to the switch access list and applies the ACL on endpoint-connected switch ports (access group is the ACL on a switch port).

When this option is disabled, the Switch Plugin only adds the relevant ACL rules to the switch access list; the plugin does not also apply the ACL on endpoint-connected switch ports (access group is the ACL on a switch port). In this case, the CounterACT user must then manually add the ACL to the appropriate switch port(s).
IP ACL

This section defines the parameters used to support IP address blocking of detected endpoints, applied using the *Endpoint Address ACL* action.

Add CounterACT authentication servers permit rules

Do not clear this checkbox (this option is enabled by default). If you clear the checkbox, CounterACT may not have access to the blocked endpoints and configured authentication servers.

ACL Number (100-199)

Type the number of the extended ACL to use on the switch. (ACLs on Enterasys switches are defined by number rather than name.)

ACL Configuration – Juniper Switches

In the ACL page of the Add Switch wizard, define the Switch Plugin ACL configuration for interoperation with managed Juniper switches. The available options are described in the following sections.

The Juniper-specific term for an ACL is *firewall filter*. A firewall filter can simultaneously contain both IP ACL rules and MAC ACL rules. At any given time, only one firewall filter can be applied to a Juniper switch port.

For details about the Switch Plugin ACL capabilities, see *Appendix 6: Working with ACL Capabilities*.

Enable ACL

Enable or disable the Endpoint Address ACL (IP address-based ACL or MAC addressed-based ACL) configuration defined on this page.
Block hosts learned via downstream devices

This option is used with the *Endpoint Address ACL* action.

Enable or disable the blocking of endpoints on the access port or, if not found on the access port, on a trunk port. Enabling this option allows the Switch Plugin to apply the ACL firewall filter to detected endpoints that reside on a downstream switch device that, for example, does not support ACL firewall filter use. By default, this option is disabled.

Add ACL firewall filter to physical ports

This option is used with the *Endpoint Address ACL* action.

By default, this option is enabled. When enabled, the Switch Plugin adds the relevant ACL firewall filter to the switch ACL list and applies the ACL firewall filter on endpoint-connected switch ports.

When this option is disabled, the Switch Plugin only adds the relevant ACL firewall filter to the switch ACL list; the plugin does not also apply the ACL firewall filter on endpoint-connected switch ports. In this case, the CounterACT user must then manually add the ACL firewall filter to the appropriate switch port(s).

Keep ACL firewall filter on ports after action canceled

This option is used with the *Endpoint Address ACL* action.

When this option is enabled, the Switch Plugin leaves the ACL firewall filter, which was previously applied by an *Endpoint Address ACL* action, on its port after the action is cancelled for an endpoint. The ACL firewall filter remains on the port until either the plugin is stopped or Switch Plugin garbage collection occurs. The plugin does remove the relevant rules from the ACL firewall filter. By default, this option is disabled.

Operating in this manner, the plugin reduces the amount of CLI configuration changes in the switch that, in turn, yields a reduction in both CPU and memory usage of the switch.

Add CounterACT authentication servers permit rules

This option is used with IP ACL rules of an *Endpoint Address ACL* action and supports the IP address blocking of detected endpoints.

Do not clear this checkbox (this option is enabled by default). If you clear the checkbox, CounterACT may not have access to the blocked endpoints and configured authentication servers.

Specify the ACL firewall filter name to be used on the switch

Select the name of the ACL firewall filter to be used by the *Endpoint Address ACL* action on the Juniper switch. Select either one of the following options:

- `forescout_acl` - the CounterACT-supplied, default ACL firewall filter name.
- `Custom` - upon selecting this option, enter an ACL firewall filter name in the associated field.
Security Group Tagging Configuration

The plugin supports the Security Group Tagging functionality of a Cisco TrustSec domain. A Cisco TrustSec domain is a collection of authorized and authenticated Cisco switches and routers. These switches and routers secure and control the IP traffic within the domain, by using the information that is added in the TrustSec header of all IP packets to enforce the domain’s access control policy.

Within the Cisco TrustSec domain, an assigned Security Group Tag (SGT) is either carried through the network or imposed on the endpoint. Imposing an SGT on endpoint IP traffic generated in the domain requires the following:

- The endpoint is assigned an SGT to be imposed. An SGT is a number in the range of 1 - 65,535.
- Any TrustSec domain switch that handles IP traffic processes the SGT Exchange Protocol (SXP) in either one of the following manners:
 - As an SXP Speaker switch. Switches that are SXP Speakers understand the protocol, identify that the IP packet requires its SGT assignment to be imposed and then forward the IP packet to an SXP Listener switch, based on configured, SXP network connections.
 - As an SGT-enabled switch. Switches that are SGT-enabled have the ability to impose the SGT assignment in an IP packet (Cisco terms this ability inline tagging).

In support of the Security Group Tagging functionality of a Cisco TrustSec domain, the Switch Plugin provides the following:

- The Assign Security Group Tag action to assign an SGT to IP addresses, these being CounterACT-detected endpoints. The applied action can be canceled.
- The SGT property. Resolving this property provides the currently assigned SGT, if any, of an endpoint.

Ensure that the plugin can perform the Assign Security Group Tag action and resolve the SGT property for CounterACT-detected endpoints that are located on managed Cisco switches by performing the following actions:

1. Configure the Switch Plugin to use CLI communication with the managed Cisco switch. For details, see CLI Configuration.
2. Enable the advanced configuration flag assign_sgt in the Edit general parameters dialog box of the Switch pane. For details, see Advanced configuration flags, Enable a Feature.
3. For the managed Cisco switch, configure the plugin to read/write switch SGT information. See SGT Pane/Tab.
4. Test the managed Cisco switch configuration to verify that the plugin successfully reads/writes the switch’s SGT information and that the switch has the necessary Security Group Tagging configuration, meaning that the switch is either SGT-enabled, an SXP Speaker or both.
5. After successful test results, save the updated switch plugin configuration (in the Switch pane, select Apply).
SGT Pane/Tab

For a managed Cisco switch, configure the plugin to read/write switch SGT information. This is accomplished either when adding a switch to be managed by the plugin, using the Add Switch wizard > SGT pane, or when editing an existing managed switch, using the Edit Switch > SGT tab.

To configure plugin performance of SGT-related processing on the managed Cisco switch:

1. In the SGT pane/tab, enable the Read/Write Switch SGT Information.

2. Define the default SGT that the plugin must use when canceling the Assign Security Group Tag action that is applied on an endpoint. The following options are available:
 - **Re-assign original SGT to endpoint**: Selecting this option instructs CounterACT to return the SGT assignment that existed on the endpoint immediately prior to CounterACT applying any Assign Security Group Tag action on the endpoint.
 - **Clear endpoint of SGT assignment**: Selecting this option instructs CounterACT to delete the SGT assignment that exists on the endpoint. This option results in the affected endpoint having no assigned SGT.

802.1X Integration Tab

If you are working with 802.1X authentication and authorization and you have installed the 802.1X CounterACT Plugin on the CounterACT device, an extra page is displayed in the Add Switch wizard. Options here let you:

- Ensure communication between the switch device and the CounterACT RADIUS server in 802.1X environments
- Determine how to roll out network access assignments
You should review information about 802.1X and device integration before working with these options.

To review 802.1X Plugin information:
1. Select **Options** from the **Tools** menu.
2. Select the Plugins folder.
3. Select **802.1X** from the Plugins pane.
4. Select **Help**.

Global Configuration Options for the Switch Plugin

This section describes global options that apply to all switches configured in the Switch Plugin.
To open the general parameters dialog box:

1. Select Options in the Switch pane toolbar. The Edit general parameters dialog box opens.

Maximum allowed endpoints connected to port for Block or Assign to VLAN actions

A Switch Block or an Assign to VLAN action is applied on a port only if the number of endpoints that are connected to that port does not exceed the defined value of this option. VoIP devices that are connected to that port do NOT count towards this limit.

Defining a low value for this option means that the plugin will not block or reassign ports that are connected to other switches, routers or hubs. For example, if another hub is connected to a switch port, there will usually be numerous users behind the port.

You can also use the option as a security mechanism. If, for example, numerous endpoints are located on a single hub port but only one of them matches your policy, you can prevent unnecessary blocking of compliant endpoints by limiting the number of blocked endpoints. (If one endpoint matches the policy but several endpoints are located on the port, then defining a high value means that all endpoints are blocked or quarantined – regardless of their policy compliance status.)

If the defined Maximum allowed endpoints connected to port for Block or Assign to VLAN actions value is exceeded, the Switch Block or Assign to VLAN action icon in the Detections pane indicates that the action failed.

When the defined value of the option is exceeded, the Detections pane tooltip displays:

Failure (mac[XXX]) - port [XXX] has multi users
Query rate (per second)
This is the maximum number of switches that will be queried per second. The Switch Plugin proceeds through all switches one-by-one, and then starts again. Depending on the number of switches configured, the value here may not allow the plugin to fulfill the query rate set in the When SNMP is used to read IP to MAC mapping, refresh reported entries parameter in the Switch Advanced Settings dialog box (see Performance Tuning for details).

If refreshing the ARP table is important, be sure to set this value high enough.

Enable multi-process mode
Selecting this option enables multi-process operation of the Switch Plugin on all Appliances. By default, the Switch Plugin operates on all Appliances in multi-process mode (option checkbox selected).

When Enable multi-process mode is selected, each Appliance runs multiple, parallel device management processes, thereby increasing the real-time, switch management capacity of CounterACT. When this option is not selected, the Switch Plugin on each Appliance runs in standard, single-process mode.

For additional deployment considerations and information about multi-process operation of the Switch Plugin on Appliances, see Appendix 7: Improve Switch Management for Large Deployments.

Handle SNMP Traps
Select this option to enable Switch Plugin handling of the SNMP traps it receives from managed switch devices. Clear the Handle SNMP Traps checkbox to disable plugin handling of received SNMP traps; the plugin then ignores all received SNMP traps.

SNMP Trap Processing
The types of SNMP traps that the plugin handles are:

- SNMP link status traps [the Link Up trap and the Link Down trap]
- The MAC notification MAC Address Learned trap (Cisco only)

Selecting the Handle SNMP Traps option configures the Switch Plugin to receive SNMP traps sent from switches whenever a switch detects an endpoint connecting to or disconnecting from the network.

- When the advanced configuration flag forward_snmp_traps is disabled (the default state of this flag), each Appliance operates as follows:
 - The Switch Plugin processes SNMP traps sent from switch devices that the Appliance manages.
 - The Switch Plugin ignores SNMP traps sent to the Appliance by a switch device that the Appliance does not manage (sending switch device is managed by another Appliance).

- When the advanced configuration flag forward_snmp_traps is enabled, each Appliance operates as follows:
 - The Switch Plugin processes SNMP traps sent from switch devices that the Appliance manages.
The Switch Plugin forwards SNMP traps sent by a switch device that the Appliance does not manage to the Appliance managing the sending switch device. The plugin uses direct inter-Appliance communication infrastructure to forward SNMP traps to the target Switch Plugin running on the relevant Appliance. This infrastructure enables direct communication between Appliances. For the requirements to use this infrastructure to forward SNMP traps, see Direct Inter-Appliance Communication Infrastructure Requirements.

- For information about enabling the forward_snmp_traps advanced configuration flag, see Enable or Control Features.

When the Switch Plugin receives an SNMP Link Up trap or a MAC notification MAC Address Learned trap, it triggers a CounterACT admission event (a network event that indicates the admission of an endpoint into the network) and allows the CounterACT Console to know almost immediately about the change.

Receipt of an SNMP Link Up trap for an endpoint from a managed switch, causes the plugin to then check for and, if necessary, wait for the receipt of an associated MAC Address Learned trap for the endpoint, as follows:

- Plugin checks for the receipt, during the preceding 5 second interval, of the associated MAC Address Learned trap.
- If a previously received trap is not found, plugin waits to receive an associated MAC Address Learned trap, during the following 5 second interval.
- If no associated MAC Address Learned trap is received, during the following 5 second interval, the plugin performs a MAC query on the managed switch to learn additional MAC address detail about the endpoint.

The check-for-receipt/wait-for-receipt interval is controlled by the property config.query_mac_post_traps_delay.value, which is maintained in the CounterACT local.properties file. You can modify the property's value to shorten or lengthen the interval, using the following fstool command line:

```
fstool sw set_property config.query_mac_post_traps_delay.value <interval length>
```

See Configuring MAC Notification Traps on Cisco Switches for information about configuring a Cisco switch to send MAC notification traps to CounterACT.

SNMP Traps Ignored

The Switch Plugin ignores the following received traps:

- Traps from a switch not being managed by the plugin.

 Exception: When the community string of the received trap matches the community string of a managed switch that has Use switch configuration as template selected (see Use Switch Configuration as a Template), then the plugin does handle the trap sent to it from the unmanaged switch.

- The MAC notification MAC Address Removed trap. This is due to the trap being an unreliable indicator of endpoint disconnection from a switch, in scenarios where the endpoint is connected to either a VoIP device or a hub.
Apply actions on ports with connected endpoints that use LLDP/CDP/FDP

Selecting this option allows the Switch Plugin to apply the Switch Block action and the Assign to VLAN action on ports with connected endpoints, where such endpoints use one of the following discovery protocols: LLDP, CDP or FDP.

Allow blocking VoIP switch ports

Select this option to use the Switch Block action in a VoIP environment. Clear this option to prevent use of the Switch Block action for blocking VoIP ports. For a list of switches that support VoIP blocking, see VoIP Support.

Allow Assign to VLAN VoIP switch ports with no SecureConnector

This option lets you use the Assign to VLAN action in a VoIP environment when SecureConnector is not installed on endpoints connected to VoIP switch ports.

If SecureConnector is not installed on an endpoint, the endpoint will not receive a new IP address automatically (unless Allow bouncing VoIP Switch Ports with no SecureConnector is selected) and must be manually provided with a new IP address.

Allow bouncing VoIP switch ports with no SecureConnector

Select this option to bounce the switch VoIP ports when performing the Assign to VLAN action. Note that this means that calls from VoIP devices (IP phones) are disconnected when the endpoint is assigned to a new VLAN.

This option is enabled only if Allow assign to VLAN VoIP switch ports with no SecureConnector is selected.

In the case of an endpoint located behind a VoIP device, if the VoIP device is connected to a PoE port on the switch but powered by an external power supply, bouncing the switch port does not cause a link-down on the endpoint and the endpoint must be manually provided with a new IP address.

Automatically install SecureConnector

Select this option to silently install SecureConnector on an endpoint (if it is not already installed) when performing an Assign to VLAN action.

If you do not select this option, VoIP ports on the switch will either be bounced or need to be manually assigned new IP addresses.

Ignore hosts associated with the following MAC addresses

Use this option to tell the plugin to ignore endpoints that are associated with the listed MAC addresses. Comma-separated regular expressions can be entered in this field. By default, the following MAC addresses are listed in this field:

- 0007b400.* (a Cisco virtual MAC address range, used with the Gateway Load Balancing Protocol)
- 00000c07ac.* (HSRP traffic)
- 00005e0001.* and 00005e0101.* (VRRP traffic)
- 02010000000 (the heartbeat for Windows Server 2003 load-balancing)
To restore the default setting, clear the field of all entries and select OK. In the Options window, select **Apply** to save the Switch Plugin configuration update.

ACL enabled ports

Use this option to ensure that specific ports are available for restricted endpoints when working with the rules of an **Endpoint Address ACL** action. The ports that you enter here remain available regardless of the **Endpoint Address ACL** actions defined in the plugin.

By default, 53/UDP (DNS) is enabled.

To restore the default setting, clear the field of all entries and select OK. In the Options window, select **Apply** to save the Switch Plugin configuration update.

Maximum assigned users per port to default VLAN

This option specifies the maximum number of endpoints connected to a port so that, if a default VLAN is specified (see **Default VLAN**), the port may be assigned to the default VLAN.

Time period to halt assignments to default VLAN (hours)

This option specifies the time period to wait until the Switch Plugin begins reassigning ports to the default VLAN. For example, if the maximum number of endpoints per port is set to 4 in the preceding option, and the value here is set to 5 hours, the port will not be assigned to the default VLAN for 5 hours, even if the number of endpoints on the port falls to 4 within the 5 hours.

Advanced configuration flags

Advanced configuration flags are used to:

- Enable or Control Features
- Implement Workarounds – see Appendix 2: Troubleshooting, Workarounds and Feature Functionality Support

Enable **global** advanced configuration features by defining the appropriate flag in the **Advanced configuration flags** field. Advanced configuration flags apply to all switches configured to work with the plugin.

To enable per switch advanced configuration features, see **Configuration Flags**.

Per-switch configuration of a flag always takes precedence over the **global** configuration of that flag.

To enable a **global** advanced configuration feature:

1. In the Console toolbar, select the **Options** icon.
2. In the **Options** window navigation tree, select **Switch**. The **Switch** pane displays.
3. In the **Switch** pane, select the **Options...** button. The **Edit General Parameters** window opens.
4. In the **Advanced configuration flags** field, use any of the following statements, as applicable:

- `<vendor>:<flag_name>:on` (enables the flag)
- `<vendor>:<flag_name>:<decimal_value>` (enables the flag and assigns it the provided value)
- `<vendor>:<flag_name>:<text_string>` (enables the flag and assigns it the provided text)

Use the comma (,) to separate between advanced configuration flag statements.

For `<vendor>`, **all** enables the flag for all supported switch vendors; a specific supported vendor name enables the flag only for the switches of the specified vendor, for example, `cisco`, `nortel`, `enterasys`. For certain flags, only **all** is valid for use in the `<vendor>` field. Other flags are only intended for use with a specific supported vendor and therefore, only that vendor name is valid for use in the `<vendor>` field. These constraints are identified in the relevant flag usage description.

5. Select **OK** and then select **Apply**.

To disable a global advanced configuration feature:

1. In the Console toolbar, select the **Options** icon.
2. In the **Options** window navigation tree, select **Switch**. The **Switch** pane displays.
3. In the **Switch** pane, select the **Options...** button. The **Edit General Parameters** window opens.
4. In the **Advanced configuration flags** field, do any of the following:
 - Delete the relevant, advanced configuration flag statement.
 - If the **on** parameter was used to enable the flag, then modify the relevant, advanced configuration flag statement to:
 `<vendor>:<flag_name>:off`
5. Select **OK** and then select **Apply**.

Enable or Control Features

Several advanced configuration flags are provided for use with specific Switch Plugin features. These flags serve either one of the following purposes:

- Enable a Feature
- Control a Feature

Enable a Feature

The following advanced configuration flags enable a plugin feature:

- `acl_action_type`
- `assign_sgt`
- `forward_snmp_traps`

acl_action_type

The `acl_action_type` enables use of the Access Port ACL action. To enable use of the action, configure the `acl_action_type` as follows:

- `all:acl_action_type:Access_Port_ACL`
To use the Endpoint Address ACL action, make sure that the above configuration statement does not appear in the Advanced configuration flags field (since the default setting of this flag is all:acl_action_type:IP_ACL, which enables use of the Endpoint Address ACL action, therefore explicit flag configuration is not necessary).

Flag Constraint: Only all is valid for use in the <vendor> field.

At any given time, only one of these ACL actions, either the Endpoint Address ACL action or the Access Port ACL action, can be enabled for use.

To switch between the enablement of these two actions, do the following:

1. Stop the Switch Plugin on all CounterACT devices. Doing so, results in the cancellation of currently applied, switch restrict actions.
2. In the Advanced configuration flags field of the Edit general parameters window, define the acl_action_type flag to enable the desired action for use, as described in this section.
3. Start the Switch Plugin on all CounterACT devices.

assign_sgt

The assign_sgt flag enables plugin use of the SGT-related components Assign Security Group Tag action and the SGT property. To enable use of the SGT-related components, configure the assign_sgt as follows:

- all:assign_sgt:on

By default, this flag is disabled, all:assign_sgt:off. When this flag is disabled, the Assign Security Group Tag action and the SGT property are unavailable for use and do not appear in the Console. When the action and property are currently included in existing policies and the assign_sgt flag is disabled, the action and the property are marked as Obsolete in the relevant policies. For information about Cisco Security Group Tagging functionality, see Security Group Tagging Configuration.

forward_snmp_traps

When a switch device sends SNMP traps about endpoint connection to or disconnection from the network to an Appliance that does not manage the sending switch device and the forward_snmp_traps flag is enabled, plugin processing ensures that the received SNMP traps are forwarded for handling to the Appliance that manages the sending switch device.

By default, Switch Plugin forwarding of SNMP traps is disabled. Forwarding of SNMPv1 and SNMPv2 traps is supported.

To enable Switch Plugin forwarding of SNMP traps:

1. In the Advanced configuration flags field, configure the forward_snmp_traps flag as follows:
 all:forward_snmp_traps:on
2. Make sure that the Handle SNMP Traps checkbox is selected (default option setting).
Control a Feature

The following advanced configuration flag controls the plugin Expedite IP Discovery action:

- `ip2mac_aggregation_interval`

This flag defines an interval that controls the frequency of ARP table queries made by the Switch Plugin, as a result of the Expedite IP Discovery action, to a Connectivity Group’s designated, L3-enabled network devices in order to obtain IP to MAC mapping data. The interval is maintained per designated, L3-enabled network device. The `ip2mac_aggregation_interval` flag prevents overloading L3-enabled network devices with such queries.

During a given interval, the Switch Plugin aggregates all IP discovery resolve requests for endpoints connected to network devices that are assigned to the same Connectivity Group. At interval expiration, the plugin issues its ARP table query to the designated, L3-enabled network devices that are serving the specific Connectivity Group.

To define the IP discovery query interval, configure the `ip2mac_aggregation_interval` as follows:

- `all:ip2mac_aggregation_interval:<interval>`

 where `<interval>` specifies a number of seconds. The default `<interval>` is 10.

 Flag Constraint: Only `all` is valid for use in the `<vendor>` field.

For example, if the defined `<interval>` is 25, all IP discovery resolve requests that the plugin receives for a specific L3-enabled network device, as a result of Expedite IP Discovery actions, are delayed for up to 25 seconds prior to that switch device being queried. During the interval, the plugin aggregates consecutive IP discovery resolve requests, thereby minimizing the traffic load on the network and the switch device.

Edit Switch Configurations in the Plugin

This section describes how to edit switch configurations in the Switch Plugin.

- Editing a new switch is not described in detail; the tabs of the Edit Switch window are equivalent to the pages of the Add Switch wizard. Refer to the relevant subsection of Add Switches to the Switch Plugin.

To edit an existing switch:

1. Select Options from the Tools menu. The CounterACT Options window opens.
2. Select Switch. The Switch pane opens.
3. Select a switch in the Switch pane.

 You can select more than one switch and edit their configurations, provided that all selected switches are from the same vendor. This feature is described in the following section.
4. Select Edit. The Edit Switch dialog box opens displaying the General tab.

 When editing a switch, the Address and Vendor fields are read-only.
5. Select the tab containing the settings that you need to edit. The tabs that display for edit can vary based on switch vendor.

For more information, refer to:
- **General** tab: [General Configuration](#)
- **CLI** tab: [CLI Configuration](#)
- **SNMP** tab: [SNMP Configuration](#)
- **Permissions** tab: [Permissions Configuration](#)
- **ACL** tab: [ACL Configuration – Cisco and Brocade/Foundry Switches](#), [ACL Configuration – Enterasys Matrix N-Series Switches](#) or [ACL Configuration – Juniper Switches](#).
- **SGT** tab: [Security Group Tagging Configuration](#)
- **802.1X** tab: [802.1X Integration Tab](#)

6. After making all necessary changes, select **OK**.

7. Select **Apply** to apply your changes to the Switch Plugin.

Editing Multiple Switches

When editing multiple switches, different switches may have different configured values. If you change the value of a parameter, all selected switches take the new value; all other parameters retain their original values on a per-switch basis.

This is indicated in the Edit Switch dialog box as follows:

- Text boxes and drop-down lists: If these controls contain different text (or one of them is empty), Keep Current is displayed in the control. For example (from the General tab):

```
Connecting Appliance [keep Current]  
```
• Checkboxes: If a checkbox is selected for some, but not all, of the switches, a gray (rather than black) check is displayed in the checkbox. For example (from the General tab):

• Radio buttons: If different switches have different radio buttons selected, no radio button is selected in the dialog box. For example (in the CLI tab):
 - Switch #1:

 ![Switch #1 Radio Buttons]

 - Switch #2:

 ![Switch #2 Radio Buttons]

 - Multi-edit both switches (no radio button selected):

 ![Multi-switch Radio Buttons]

To edit multiple switches:

1. In the Switch pane, select the switches that you want to edit in the Switch pane. Make sure that all selected switches are from the same vendor.
2. Select Edit. The Edit Switch dialog box opens displaying the General tab.

When editing multiple switches, the **Address** field is not displayed and the **Vendor** field is read-only.

3. Select the tab containing the settings that you need to edit. The tabs that display for edit can vary based on switch vendor.

 For more information, refer to:
 - **General** tab: General Configuration
 - **CLI** tab: CLI Configuration
 - **SNMP** tab: SNMP Configuration
 - **Permissions** tab: Permissions Configuration
 - **ACL** tab: ACL Configuration – Cisco and Brocade/Foundry Switches, ACL Configuration – Enterasys Matrix N-Series Switches or ACL Configuration – Juniper Switches.
 - **SGT** tab: Security Group Tagging Configuration
 - **802.1X** tab: 802.1X Integration Tab

4. After making all necessary changes, select **OK**.

5. Select **Apply** to apply your changes to the Switch Plugin.

Test the Switch Configuration

The switch configuration test accomplishes the following:

- Verifies Switch Plugin communication with the selected network devices.
- Verifies that the Switch Plugin has the read and the write access required for the permissions that you specified. Specifically, read access is required to use any permission and write access is required to apply the following plugin-provided switch actions: Access Port ACL, Assign Security Group Tag, Assign to VLAN, Endpoint Address ACL and Switch Block.
Test failures may also be the result of errors not related to read or write failures. Be sure to read the information displayed in the Message column if there is a failure.

You can test an individual plugin configuration for the management of a network device or simultaneously test multiple plugin configurations for the management of multiple network devices.

Running the Test

It is recommended that you run the test:

- On initial plugin configuration.
- On plugin configurations that may be problematic, as indicated when the Status field in the Switch pane displays an Error, Warning or Information icon.

To perform the test:

1. Ensure that the plugin is running.
2. In the Switch pane, select the network devices - switch, firewall or Linux router - that you want to test.

The tests may take a few minutes. The test results for the switches that you selected are listed in the dialog box. The Message column includes, where relevant, the configured read or write method.

Test Failure Scenarios

This section lists various plugin configuration test failure scenarios.

Read and Write Failure

If the test fails for both reading and writing:

- The Status column reads *Failed*.
- The Message column reads *Fail to read mib (<MIB OID>) [No response from remote host <IP address>]*.
Write Failure

If the test fails for writing only:

- The Status column reads Passed for all tested items except actions, which require write permissions.
- The Message column for the Action reads Fail to Write mib (<MIB OID>) and indicates the reason.

If the switch IP address does not exist or the community is wrong:

- The Status column reads Failed.
- The Message column reads No response from remote host <IP address>.

If the MIB does not exist on the switch (for example, when the OS of the switch is different than that supported for the switch model):

- The Status column reads Failed.
- The Message column reads Fail to Write mib (<MIB OID>) to status () error.

Appendix 4: MIBs Used by the Switch Plugin lists MIBs that should be included on the switch.

Assign an SGT Failure

The Assign an SGT test for a managed switch yields any of the following results:

- **Not applicable** - the required advanced configuration flag assign_sgt is disabled on the managed Cisco switch.
- **Not applicable** - for any switch vendor that does not support SGT, this is every plugin-supported vendor other than Cisco.
- **Not configured** - the Read/Write Switch SGT Information setting is disabled on the managed Cisco switch.
- **Failed** - either the plugin could not read the managed Cisco switch's SGT information or the plugin read the managed Cisco switch's SGT information and determined that the switch does not support SGT; SGT and SXP capabilities are either not configured or disabled.
- **Passed** - the plugin read the managed Cisco switch SGT information and determined that the switch supports SGT; SGT and/or SXP capabilities are configured and enabled.

Connectivity with Firewall Failure

In the Connectivity test step for the management of a firewall, the Switch Plugin attempts to log in to the firewall. If log in to the firewall fails, the configuration test displays the Login refused message for this test step. The failure to log in to the firewall can be caused by any of the following reasons:

- Plugin use of wrong credentials
- Incorrect plugin parsing of the device prompt
- Connection problem

If the **Connectivity** test step for the management of a firewall fails, the **Query ARP** test step consequently displays the following message: *CLI connection is invalid[Login refused]*.

Switch ACL Support Failure

When the **switch ACL support** test step fails and the following information displays in the **Message** column of the test:

Unsupported Interface <interface name> for ACLs

This failure can be caused by plugin selection of a virtual interface of the switch on which to perform this test step, instead of selecting a physical interface.

If the `<interface name>` reported in the failure message is actually a virtual interface, prevent a reoccurrence of this test step failure by adding the tested port to the list of ports prohibited for use when verifying switch ACL support. This list is maintained in the CounterACT `local.properties` file. Add ports to this list using either their port description or a unique portion of their port description.

> The Switch Plugin also consults this list after being started, prior to verifying switch ACL support of a managed switch.

In the `fstool` command line, you can use the **OR operand** (|) to assign multiple port descriptions to the `config.sw_acl_illegal_port_name.value` property. Also, this property is not case sensitive.

To add a port to the list of ports prohibited for use when verifying switch ACL support:

1. Stop the Switch Plugin.
2. Add ports to this list using any of the following command lines:
 a. `fstool sw set_property config.sw_acl_illegal_port_name.value <port description>`
 For example, `fstool sw set_property config.sw_acl_illegal_port_name.value excluded`
 b. `fstool sw set_property config.sw_acl_illegal_port_name.value "<port description1>|...|port descriptionN>"`
 For example, `fstool sw set_property config.sw_acl_illegal_port_name.value "--uncont|--cont|EXCLUDE"
3. Start the Switch Plugin.

After adding port(s) to the list, re-perform the test of plugin configuration for the managed switch.

Further Support

If you require further details concerning the reasons for test failures, you can run an `fstool` command from your CounterACT device. The command output is a snapshot of the switch MIBs, which can then be analyzed by the ForeScout support team.
To produce a MIB snapshot when the switch uses SNMP:

1. Run the following from the CounterACT device:

 `fstool sw snmpwalk`

 Output similar to the following will be displayed:

 CounterACT Utility Tool
   ~~~~~~~~~~~~~~~~~~~~~~~

   Get SNMPWALK from Configured Switches
   Please wait, reading switch list from database...
   Open database – Success
   
   The following switches are configured to work on the appliance:
   2. 171.34.1.250 using SNMP version [2] vendor [extreme]

   Select a switch for SNMPWALK by entering its number in the list.
   For multiple switch selection, separate numbers by commas.

   Select switch: 2

   Selected switch [171.34.1.250] model [extreme]
   Take SNMPWALK on (s)elected OIDs, (a)ll OIDs, or OID (f)ile:

   2. Type a, unless you have been instructed to type s or f by ForeScout support.

   Output similar to the following will be displayed:
   
   trying . >>/tmp/171.34.1.250.extreme.walk

   3. Complete the form that opens up when you run `fstool sw snmpwalk` and submit it to the ForeScout support team for debugging assistance.

To produce a MIB snapshot when the switch uses the NETCONF protocol:

1. Run the following from the CounterACT device:
   
   `fstool sw netconf`

   Output similar to the following will be displayed:
   
   CounterACT Utility Tool
   ~~~~~~~~~~~~~~~~~~~~~~~

 Get NETCONF XMLs from Configured Switches
 Please wait, reading switch list from database...
 Open database – Success

 The following switches are configured to work on the appliance:
 2. 116.39.1.248 using NETCONF vendor [juniper]

 Select a switch for NETCONF XML query by entering its number in the list. For multiple switch selection, separate numbers by commas.

 Select switch: 2

 Open session to switch [116.39.1.248] vendor [juniper]
 Take NETCONF XMLs on (a) all XMLs (s)elected XMLs or XMLs (f)ile:
2. Type a, unless you have been instructed to type s or f by ForeScout support.

Output similar to the following will be displayed:

trying . >>/tmp/116.39.1.248.juniper.walk

View Managed Switch Information

View plugin configuration details for the switches being managed, switch information learned by the plugin and real-time, plugin activity information. Two options are available for viewing this information:

- In the Switch pane
- In the Properties dialog box of a selected network device - switch, firewall or Linux router

Switch Pane Display

The Console Switch pane displays information about the network devices that the plugin is configured to manage.

These devices are associated with one of the following display categories:

- Enabled (being managed)
- Disabled (read/write permissions not configured for management of device)
- Newly Discovered (via auto-discovery)
- Non Switch (a network device entry that is manually designated as not a switch by the CounterACT user)

The Switch pane can display the following network device information:

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.1X Deployment Phase</td>
<td>Obsolete - column removal planned for a future version.</td>
</tr>
<tr>
<td>ACL Status</td>
<td></td>
</tr>
<tr>
<td>Column</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Actions</td>
<td></td>
</tr>
<tr>
<td>ARP Table OID</td>
<td></td>
</tr>
<tr>
<td>ARP Translation</td>
<td></td>
</tr>
<tr>
<td>Auto Discovery</td>
<td>Identifies whether the managed switch is enabled to/disabled from performing auto-discovery of additional switches. In the Console, the performance of auto-discovery is enabled/disabled in the Permissions pane/tab > Discovery Permissions section.</td>
</tr>
<tr>
<td>Auto Discovery Rate</td>
<td>The frequency at which the managed switch performs its periodic auto-discovery of additional switches. By default, this frequency is every 600 seconds (10 minutes). In the Console, this frequency is defined in the Permissions pane/tab > Advanced > Switch Advanced Settings window > Performance tuning section.</td>
</tr>
<tr>
<td>Auto Discovery Status</td>
<td></td>
</tr>
<tr>
<td>Block via downstream switches</td>
<td>Identifies whether the plugin option Block hosts learned via downstream devices is enabled or disabled for the managed switch. In the Console, this option is defined in the ACL pane/tab.</td>
</tr>
<tr>
<td>Comment</td>
<td>Displayed by default. The presented text is taken from the Comment field of the General pane/tab.</td>
</tr>
<tr>
<td>Connectivity Groups</td>
<td>The Connectivity Groups to which the managed switch is assigned. This information is defined in the Connectivity Groups field of the Switch Advanced Settings window (Permissions pane/tab > Advanced).</td>
</tr>
<tr>
<td>Detected</td>
<td>Displayed by default. Identifies how the Switch Plugin learned of the table entry. Possible column values are:</td>
</tr>
<tr>
<td></td>
<td>• Manual - table entry was manually added by a CounterACT user.</td>
</tr>
<tr>
<td></td>
<td>• Auto Discovery - table entry resulted from being auto-discovered by a managed switch.</td>
</tr>
<tr>
<td>Detected By</td>
<td>Displayed by default. The IP address of the managed switch that auto-discovered the table entry.</td>
</tr>
<tr>
<td>Detection Time</td>
<td>The date/time that the table entry was auto-discovered.</td>
</tr>
<tr>
<td>IP Address</td>
<td>Displayed by default. The IP address of the switch that the plugin uses for its management of the switch. This information is defined in the IP Address field of the General pane/tab.</td>
</tr>
<tr>
<td>Column</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>IP Interface Addresses</td>
<td>Displayed by default. Additional IP addresses of the network device as known by the plugin. Switches can have more than one IP address, for example, Layer 3 switches. When you add a new switch to the plugin, only a single IP address can be configured. The Switch Plugin automatically learns the other IP addresses of the switch and reports them to the Console, which displays them in this column entry.</td>
</tr>
<tr>
<td>Is Template</td>
<td>Displayed by default. Identifies whether or not the plugin configuration for the managed switch is designated for use as a template for newly discovered, yet unmanaged switches having the same SNMP community.</td>
</tr>
<tr>
<td>L3 for Group</td>
<td>The IP addresses of plugin-managed, L3-enabled network devices that are defined to serve the Connectivity Groups to which the managed switch is assigned. Such L3-enabled network devices are used in the Expedite IP Discovery action.</td>
</tr>
<tr>
<td>Last Trap Received</td>
<td>Time of plugin receipt of the most recent SNMP trap from the switch.</td>
</tr>
<tr>
<td>Location</td>
<td></td>
</tr>
</tbody>
</table>
| **Managed By** | Displayed by default. The CounterACT device, which is identified either by name or IP address, currently responsible for managing the switch and either one of the following statuses:
 - The status of the Switch Plugin on the CounterACT device
 - The status of the CounterACT device, currently responsible for managing the switch, when that CounterACT device is disconnected. |
| **Number of MACs Found** | The number of MAC address entries in the MAC address table of the managed switch, which was learned from the Switch Plugin's most recent query of this table. |
| **OS** | Operating system information of the network device. |
| **Permission** | The MAC address table permissions that are defined for plugin management of the switch. Possible column values are:
 - **Read**
 - **Read/Write**
 In the Console, these permissions are defined in the Permissions pane/tab > MAC Permissions section. |
| **Query ARP Rate** | The frequency, in seconds, at which the plugin periodically queries the ARP table of the network device. By default, this frequency is every 600 seconds (10 minutes).
 In the Console, this frequency is defined in the Permissions pane/tab > Advanced > Switch Advanced Settings window > Performance tuning section. |
<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query ARP Status</td>
<td>Number of ARP table entries (MAC address to IP address mapping entries) that the plugin learns from reading the ARP table of the network device.</td>
</tr>
<tr>
<td>Query Hosts Rate</td>
<td>The frequency, in seconds, at which the plugin periodically queries the MAC address table of the managed switch. By default, this frequency is every 60 seconds (1 minute).</td>
</tr>
<tr>
<td></td>
<td>In the Console, this frequency is defined in the Permissions pane/tab > Advanced > Switch Advanced Settings window > Performance tuning section.</td>
</tr>
<tr>
<td>SGT Enabled, SXP Speaker</td>
<td>Relevant only for managed Cisco switches that are located within a Cisco TrustSec domain. Identifies the managed switch as being either SGT-enabled, an SXP Speaker or both.</td>
</tr>
<tr>
<td>SNMP Version</td>
<td>The SNMP version of the network device.</td>
</tr>
<tr>
<td>Status</td>
<td>Displayed by default.</td>
</tr>
<tr>
<td></td>
<td>Current status of the network device as known to the plugin. Statuses include Newly Discovered, Disabled, the No errors, No warnings icon and the No response from the switch icon.</td>
</tr>
<tr>
<td>Switch Alerts</td>
<td>Displayed by default.</td>
</tr>
<tr>
<td></td>
<td>Key information about the network device that the plugin wants to bring to the attention of the CounterACT user. Alerts include Duplicate Switch, New and Not a switch.</td>
</tr>
<tr>
<td>Switch Hostname</td>
<td>Switch name as defined in the managed switch.</td>
</tr>
<tr>
<td>Switch Response Time</td>
<td>Displayed by default.</td>
</tr>
<tr>
<td>Vendor</td>
<td>Displayed by default.</td>
</tr>
<tr>
<td></td>
<td>Switch vendor name.</td>
</tr>
</tbody>
</table>

Columns can be added to and removed from the **Switch** pane display.

To add columns to and remove columns from the Switch pane:

1. Right-click any **Switch** pane column header. A dropdown menu opens, which contains the following options: Add/Remove Columns, Remove Column and Best Fit Column.

2. Select **Add/Remove Columns**. The Add/Remove Columns dialog box opens.
3. Do any of the following:
 a. From the **Add Columns** pane, select one or more column options you want to add to the **Switch** pane display and select **Add**. The **Selected Columns** pane is updated to reflect the added column selection(s).
 b. From the **Selected Columns** pane, select one or more column options you want to remove from the **Switch** pane display and select **Remove**. The **Selected Columns** pane is updated to reflect the removed column selection(s).

4. Do any of the following:
 a. Select **Apply**. The **Switch** pane display is updated with the added/removed column(s) and the Add/Remove Columns dialog box remains open.
 b. Select **OK**. The Add/Remove Columns dialog box closes and the **Switch** pane display is updated with the added/removed column(s).

Properties Dialog Box Display

For a network device that is selected in the **Switch** pane, you can display its **Properties** dialog box. The **Properties** dialog box provides the same information about the network device as does the **Switch** pane display.

To view the Properties dialog box details:

1. In the **Switch** pane, right-click an entry. A dropdown menu opens.
2. From the menu, select **Properties**. The **Properties** dialog box for the selected network device opens.
Replicate Switch Configuration

The Switch Plugin provides three methods for copying switch configurations from one switch to another:

- **Duplicate Existing Switch**
 Copy the configuration of an existing switch to one or more new switches that you specify by IP address.

- **Use Switch Configuration as a Template**
 Copy the configuration of an existing switch to unmanaged switches that belong to the same SNMP community as they are detected.

- **Auto-Discovery – Discover Neighboring Switches**
 Copy the configuration of an existing switch to one or more neighboring unmanaged switches, discovered using an auto-discovery protocol.

Duplicate Existing Switch Configuration

You can add one or more new switches to the Switch Plugin by copying the configuration of an existing switch to the new switches. You must provide the IP addresses of the new switches; you can import a list of IP addresses from a CSV file rather than enter them manually.

To duplicate an existing switch:

1. **Select Options** from the **Tools** menu. The CounterACT Options window opens.
2. **Select Switch**. The Switch pane opens.
3. Select a switch in the Switch pane.
4. Select **Duplicate**. The Duplicate Switch dialog box opens.

![Duplicate Switch dialog box](image)

To make a single duplicate of a switch:

1. Enter the IP address of the new switch in the **Duplicate to Single Address** IP address box.
2. Select **OK**.

 The Edit Switch dialog box opens with the selected switch’s parameters and the new switch’s (read-only) IP address. All parameters can be edited.

3. Select **OK** to save the new switch.
4. Select **Apply** to add the new switch to the Switch Plugin.

To make multiple duplicates of a switch:

1. Select **Duplicate to Multiple Addresses**.

 The **Add** and **Import** buttons are enabled.

2. Do one of the following:

 – Select **Add** to add the IP addresses of the new switches one-by-one.
 – Select **Import** to import a list of IP addresses from a CSV file.

3. Select **OK**.

 The Edit Switch dialog box opens with the selected switch’s parameters but no **Address** field. All parameters can be changed to a different value for all the new switches. (You can also edit individual switches after you have saved all the new switches.)

4. Select **OK** to save the new switches.
5. Select **Apply** to add the new switches to the Switch Plugin.

Use Switch Configuration as a Template

You can specify that a switch be used as a template for unmanaged switches that belong to the same SNMP community as the existing switch.

This feature does not support SNMPv3.
When an unmanaged switch sends an SNMP trap, and the community string of the unmanaged switch matches the community string of the template switch, all of the template switch settings including vendor (except the IP address) are applied to the newly-detected switch. Switches detected in this manner are added to the Switch Plugin automatically and there is no need to restart the Switch Plugin.

It is strongly recommended that you use a different community for each switch vendor.

To specify that a switch is to be used as a template:

1. In the General page/tab, select the Use switch configuration as template checkbox. See the Use switch configuration as template option description in the General Configuration section.

Since the plugin adds the unmanaged switch in the Approved (managed) state, prior to evaluating the addition of that switch, a delay is incorporated into plugin processing. This delay is used to ensure that the IP address of the unmanaged switch is not an additional IP address of a currently managed switch (additional IP addresses of currently managed switches display in the Console Switch pane IP Interface Addresses column). The processing delay is as follows:

- After the receipt of an SNMP trap from a switch and before the plugin begins evaluating the addition of that switch, 10 minutes have had to elapse since the most recent plugin start time. Only SNMP traps, received after that 10-minute period has elapsed, trigger plugin evaluation of a switch addition. The 10-minute period is the default period.

Modify this period, per Appliance, using the config.add_by_template_delay.value property in the local.properties file. To maintain the same Switch Plugin wait period throughout your entire CounterACT deployment, make sure to modify this wait period with the identical value in all your CounterACT devices.

Auto-Discovery – Discover Neighboring Switches

You can configure a single switch and then rely on the Switch Plugin auto-discovery feature to detect neighboring switches. You can enable auto-discovery on these newly-discovered switches which can then discover their neighbors.

Switch Plugin auto-discovery is supported for the switches of the following vendors:

- Arista
- Avaya (Nortel)
- Brocade/Foundry
- Cisco
- Enterasys
- H3C
- HPE switches running a ProVision/ProCurve operating system.

The Switch Plugin handles the CDP, FDP and LLDP discovery protocols, with the exception of CDP on a loopback interface of a switch. Switches use a specific
discovery protocol. For the discovery protocol in use by the switches of a specific vendor, see Appendix 1: See and Control Capabilities Summary.

Discovered switches inherit basic attributes of the switch that detected them, including the switch vendor, the CounterACT device managing the switch, CLI credentials and the SNMP version, settings and credentials. Read and write permissions, advanced settings and ACL configuration are not inherited and must be edited manually.

Note that enabling newly discovered switches includes restarting the Switch Plugin.

By default, every switch enabled for auto-discovery runs auto-discovery every 10 minutes. This value can be changed on a per-switch basis, see Read – Auto-discover additional switches (CDP, FDP, LLDP). When a new switch is discovered, a notification appears in the CounterACT Console, see Notification of Auto-Discovered Switches.

To auto-discover neighboring switches:

1. Select Options from the Tools menu. The CounterACT Options window opens.
2. Select Switch. The Switch pane opens.
3. Select Add and configure a switch. Make sure that in the Vendor field of the General pane, you select a vendor that supports auto-discovery. See Add Switches to the Switch Plugin.
4. In the Permissions pane, make sure to select Read – Auto-discover additional switches (CDP, FDP, LLDP).
5. Select Apply.
6. Select the switch that you just added and then select Discover.

A confirmation popup opens.

7. Select Yes.

The Discovery Action dialog box opens. Neighboring switches are displayed in the dialog box as they are discovered. (If no switches are discovered, No items to display is displayed in the Discovery Action dialog box.)
8. Select Close.

9. The Status, Switch Alert and Detected fields in the Switch pane indicate that unmanaged switches have been auto-discovered.

10. Select a newly-discovered switch and then select Edit.

11. Configure the switch. See Edit Switch Configurations in the Plugin.

 a. Enable the auto-discovery feature. See Read – Auto-discover additional switches (CDP, FDP, LLDP).

 b. Enable desired read and write permissions. See Permissions Configuration.

 c. For switches using ACL, enable and configure ACL in the ACL tab of the Edit Switch window. See Edit Switch Configurations in the Plugin.
12. Select Approve to approve the switch (that is, so that the Switch Plugin can manage the switch).

The status of the switch changes from **Newly Discovered** to **Disabled**.

13. Repeat the preceding three steps for each switch that you want to approve.

14. After you have approved and edited all the discovered switches, select **Apply**.

The status of each switch is updated to ✓ (Enabled) when read and write permissions are successfully assigned.

Notification of Auto-Discovered Switches

Every switch enabled for auto-discovery runs auto-discovery periodically. When a switch detects a new switch via the auto-discovery feature, the Switch Plugin notifies the CounterACT Console and a **New Switch Detected** icon appears in the Console status bar. Click the icon to open the Switch pane and configure the switch.

Once you open the **Switch** pane, the icon is removed from the status bar.

Non-Switch Devices

Occasionally devices other than switches may be discovered and added to the switch list, for example, wireless access points or routers. You can change the status of these devices to **Not a switch**. Use the **Non Switches** filter at the top of the Switch pane to hide and display these devices.

To define the status of a device as Not a switch:

1. Right-click the newly-discovered device and select **Not a switch**.

 The status of the switch changes to

To hide or display non-switch devices:

1. Select or clear **Non Switches** in the Switch pane.
To redefine a non-switch device as a switch:

1. Display non-switch devices by selecting **Non Switches**.
2. Right-click a non-switch device and select **Approve**.

Duplicate Switch Restrictions

The Switch Plugin does not allow CounterACT users to approve any **Newly Discovered** switch device that the plugin designated as a duplicate switch device. The duplicate switch designation pertains whenever the IP address of that **Newly Discovered** switch device is known to the plugin as an additional IP address of a currently managed switch. Additional IP addresses of a currently managed switch display in the Switch pane **IP Interface Addresses** column of that managed switch. When the plugin identifies a **Newly Discovered** switch device to be a duplicate switch device, it displays the alert **Duplicate Switch** in the **Switch Alerts** column of the Switch pane. For each such alert, the plugin provides the associated tooltip **This switch is a duplicate of switch <IP address>**.

The Console restricts the CounterACT user from completing any of the following related activities in the Switch pane:

- Select for approval/double-click on a newly discovered, duplicate switch device.
- Attempt to define a new switch that the plugin identifies to be a duplicate switch device.
- Selects for approval multiple, newly discovered, duplicate switch devices.

The plugin notifies the CounterACT user of the activity restriction with the display of an error message.

Working with Switch Information at the CounterACT Console

This section introduces how to view and use switch information at the CounterACT Console. The following topics are described:

- **Viewing Switch Information in the Detections Pane**
- **CounterACT Policies**
- **Clear ACLs from All Switch Ports**
More detailed information about these topics is provided in the *Working at the CounterACT Console* chapter of the *CounterACT Console User Manual*.

Viewing Switch Information in the Detections Pane

In the Console, view information obtained by the plugin in the Detections pane.

To display switch information:

1. In the **Detections** pane, right-click a table column and select **Add/Remove Columns**. The **Add/Remove Columns** window opens.

2. In the **Available Columns** pane, select switch-related items. This information appears in the **Detections** pane of the Console.
View Information in the Profile Tab

The Profile tab contains detailed information about the switch connection of a detected endpoint.
To display the Profile tab:
1. In the Console, navigate to the NAC tab.
2. In the Detections pane, double-click a detected endpoint. The Host Details window of the selected endpoint opens.
3. In the window, select the Profile tab.

Much of the switch connection detail for a detected endpoint is provided by resolved switch properties. For a description of these properties, see Switch Properties.

In addition to the resolved switch property information, other switch connection detail about a selected endpoint is provided in the tab and described in the following sections.

Switch Port Host ACL Locations – Candidates

This entry lists all the switch ports that the detected endpoint is connected to. This information is taken from the MAC table of each switch in which the endpoint is recorded (all identified instances of layer 2 forwarding information to the detected endpoint). Information provided in the following format:

<switch IP address>:<card model><card #>/<port #>

- If the access port is known and Enable ACL is configured for the switch, the entry lists the switch IP address and access port.

- If the access port is not known and both Enable ACL and Block hosts learned via downstream devices are configured for the switch, the entry lists any trunk ports.

The entry lists more than one candidate if there is more than one eligible trunk port.
Switch Port Host ACL Locations – Enforced

This entry lists all the switch ports that the detected endpoint is connected to and that have an ACL applied to the port. This information is provided in the following format:

```
<switch_IP_address>:<card_model><card_#>/<port_#>:<ACL_name>
```

Endpoints Connected to a Brocade/Foundry Switch Port VLAN with Virtual Routing Interface

For a detected endpoint that is connected to a Brocade/Foundry switch port VLAN and that VLAN is configured with a virtual routing interface, be aware of the following atypical, switch connection detail in the **Profile** tab display of such an endpoint:

- The **Switch IP and Port Name** property - contains the switch IP address and the physical Ethernet interface information of the port. This is expected.
- The **Switch Port Host ACL Locations - Candidates** property - contains the VLAN/virtual routing interface information of the port. This is atypical.
- After plugin application of the **Endpoint Address ACL** action on such a detected endpoint, the **Switch Port Host ACL Locations - Enforced** property - contains the VLAN/virtual routing interface information of the port. This is atypical.

To display switch information details about a Brocade/Foundry switch port VLAN that is configured with a virtual routing interface, the network administrator must run, on the Brocade/Foundry switch device, the `show running config` command specifying the port VLAN/virtual routing interface.

CounterACT Policies

Use CounterACT policy tools to monitor and control endpoints that are connected to switches. The following topics are described:

- **Switch Properties**
- **Restrict Actions**
- **Remediate Actions**
- **Detect and Ignore Switch Virtual Interfaces**

Switch Properties

You can create a policy that applies to endpoints that are connected to a specific managed switch by specifying the switch’s properties.
The Switch Plugin detects switch information according to the criteria you specify when defining a policy rule. The following tables describe the policy properties to use with the Switch Plugin:

- **Basic Switch Properties**
- **Network Device Compliance Properties**
- **Switch Track Changes Properties**

Basic Switch Properties

The following policy properties resolve basic information about a managed switch:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Hosts on Port</td>
<td>The number of endpoints connected to a specific port. You can write a condition for this number to instruct the Switch Plugin to detect ports with more than one endpoint (MAC address) if, for example, a hub and a guest computer have been connected together with a company endpoint on a company switch port. Ports connecting between switches are excluded from this calculation.</td>
</tr>
<tr>
<td>SGT</td>
<td>The Security Group Tag (SGT) assigned to an endpoint. An SGT is a number in the range of 1 - 65,535. Endpoints with an assigned SGT are connected to a managed Cisco switch in a Cisco TrustSec domain. When the property is currently included in existing policies and the advanced configuration flag <code>assign_sgt</code> is disabled, the property is marked as Obsolete in the relevant policies. For details about this flag, see Advanced configuration flags.</td>
</tr>
<tr>
<td>Switch Hostname</td>
<td>The switch name as defined in the managed switch.</td>
</tr>
<tr>
<td>Switch IP</td>
<td>The switch IP address.</td>
</tr>
<tr>
<td>Switch IP and Port Name</td>
<td>The switch IP address and port name (the physical Ethernet interface information of the port). The format is <code><IP_address>:<port></code>.</td>
</tr>
<tr>
<td>Property</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Switch Location</td>
<td>The switch location based on the switch MIB.</td>
</tr>
<tr>
<td>Switch Port Action</td>
<td>The actions (Blocked or Assign to VLAN) that are assigned to the switch port.</td>
</tr>
<tr>
<td>Switch Port Alias</td>
<td>The description of the port as defined in the switch configuration and modified by the Switch Plugin.</td>
</tr>
<tr>
<td>Switch Port Configurations</td>
<td>For use with Cisco and Arista devices only. The configuration detail of the switch interface to which an endpoint is connected.</td>
</tr>
<tr>
<td>Switch Port Connect</td>
<td>The physical connectivity between the endpoint and the switch port.</td>
</tr>
<tr>
<td>Switch Port PoE Connected Device</td>
<td>For use with Cisco devices only. Description of the PoE device that is connected to the PoE-enabled switch port, as provided by the managed Cisco switch. For example, Cisco IP Phone 6921.</td>
</tr>
<tr>
<td>Switch Port PoE Power Consumption</td>
<td>For use with Cisco devices only. Power consumption of the PoE device that is connected to the PoE-enabled switch port, as provided by the managed Cisco switch. The power consumption value provided is in milliwatts (mW). For example, 750. When either a non-PoE device or no device is connected to the PoE-enabled switch port, the property value is zero (0). For switch vendors that the plugin does not support switch port PoE, the Console displays the following information for this property: Vendor is currently not supported for this property.</td>
</tr>
<tr>
<td>Switch Port Name</td>
<td>The hard-coded port name.</td>
</tr>
<tr>
<td>Switch Port VLAN</td>
<td>The VLAN associated with the switch port.</td>
</tr>
<tr>
<td>Switch Port VLAN Name</td>
<td>The name of the VLAN associated with the switch port.</td>
</tr>
<tr>
<td>Switch Port Voice Device</td>
<td>Whether the endpoint connected to the switch port is a VoIP device.</td>
</tr>
<tr>
<td>Switch Port Voice VLAN</td>
<td>The switch port VLAN to which the VoIP endpoint is connected.</td>
</tr>
<tr>
<td>Switch Vendor</td>
<td>The switch vendor name.</td>
</tr>
<tr>
<td>Switch Virtual Interface</td>
<td>Identifies whether the switch interface is a Switch Virtual Interface or not. The property is supported for managed switches only.</td>
</tr>
<tr>
<td>Switch VoIP Port</td>
<td>Whether the switch port is a VoIP port.</td>
</tr>
<tr>
<td>System Description</td>
<td>Detects the system description information provided by the managed device. System description information is as specified by the network device SNMPv2-MIB property <code>sysDescr</code> (1.3.6.1.2.1.1.1).</td>
</tr>
</tbody>
</table>
Network Device Compliance Properties

For any Cisco network device managed by the Switch Plugin, use the following policy properties to create policies that determine network device compliance:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running Config</td>
<td>For use with Cisco devices only.
Detects <code>running config</code> information of switches managed by CounterACT, as generated by the <code>show running-config</code> command.
The Switch Plugin resolves this property for information at the following instances: (a) After plugin start and initially detecting the switch and (b) Whenever <code>running config</code> information changes.
Before working with this property, several configuration tasks must be performed.
As the amount of information provided by the resolved Running Config property can be very extensive, you can filter this information.
See Appendix 5: Using Network Device Compliance Policies.</td>
</tr>
<tr>
<td>Running Config Time</td>
<td>For use with Cisco devices only.
Contains the timestamp, MM/DD/YY HH:MM:SS AM/PM, of the plugin’s <code>running config</code> information query of the device.
Before working with this property, several configuration tasks must be performed. See Appendix 5: Using Network Device Compliance Policies.</td>
</tr>
<tr>
<td>Interface Table</td>
<td>For use with Cisco devices only.
Detects the specific interface configuration provided in a device <code>running config</code> for the interface.
Per interface, the resolved property provides the following information:
 • Interface Name - The interface name and when available the interface location information.
 • Interface Configuration (raw) - the specific, interface configuration, as provided in a device <code>running config</code>.
Before working with this property, several configuration tasks must be performed. See Appendix 5: Using Network Device Compliance Policies.</td>
</tr>
</tbody>
</table>

Network device compliance properties are only resolved for a managed switch’s Host IP address and not for any of the managed switch’s entries having an IP Interface Address. (*IP Interface Address* was formerly termed *More IPs* in the Console).

Instead, the Console handles network device compliance property information for switch entries whose Host IP address is an IP Interface Address in the following manner:
 • A property value of **N/A** is displayed.
Next to the property value, the following informational message is available:

Address `<IP_Interface_Address>` is an **IP Interface Address** for host `<Primary_IP_Address>`. To view network compliance property values for this host, select Host IP `<Primary_IP_address>` in the **Detections** pane (above).

Switch Track Changes Properties

Track Changes properties check whether a property value has changed. For each *Track Changes* property there is an equivalent property in the **Switch** folder that checks values of the property. For example, there is a **Switch Port VLAN Change** property in the *Track Changes* folder and a **Switch Port VLAN** property in the **Switch** folder.

![Switch Track Changes properties](image)

Policy change properties to use with the Switch Plugin are described in the following table:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGT Change</td>
<td>Identifies a change in an endpoint’s assigned Security Group Tag (SGT). An SGT is a number in the range of 1 - 65,535. Endpoints with an assigned SGT are connected to managed Cisco switch in a Cisco TrustSec domain.</td>
</tr>
<tr>
<td>Switch Hostname Change</td>
<td>Identifies a change in the switch name that is defined in the managed switch.</td>
</tr>
<tr>
<td>Switch IP and Port Name Change</td>
<td>Whether the switch IP address or port name (the format is <code><IP_address>:<port></code>) has changed.</td>
</tr>
<tr>
<td>Switch IP Change</td>
<td>Whether the switch IP address has changed.</td>
</tr>
<tr>
<td>Switch Port Action Change</td>
<td>Whether any actions (Blocked or Assign to VLAN) that are assigned to the switch port have changed.</td>
</tr>
<tr>
<td>Switch Port Alias Change</td>
<td>Whether the description of the port (as defined in the switch configuration and modified by the Switch Plugin) has changed.</td>
</tr>
<tr>
<td>Property</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Switch Port Connectivity Change</td>
<td>Whether the physical connectivity between the endpoint and the switch port has changed.</td>
</tr>
<tr>
<td>Switch Port Name Change</td>
<td>Whether the hard-coded port name has changed.</td>
</tr>
<tr>
<td>Switch Port PoE Connected Device Change</td>
<td>For use with Cisco devices only. Identifies a change in PoE device that is connected to the PoE-enabled switch port.</td>
</tr>
<tr>
<td>Switch Port PoE Power Consumption Change</td>
<td>For use with Cisco devices only. Identifies a change in power consumption of the PoE device that is connected to the PoE-enabled switch port.</td>
</tr>
<tr>
<td>Switch Port VLAN Change</td>
<td>Whether the VLAN associated with the switch port has changed.</td>
</tr>
<tr>
<td>Switch Port Voice Device Change</td>
<td>Whether the device type of the endpoint connected to the switch port has changed between VoIP and non-VoIP.</td>
</tr>
<tr>
<td>Switch Port Voice VLAN Change</td>
<td>Whether the switch port VLAN to which the VoIP endpoint is connected has changed.</td>
</tr>
<tr>
<td>Switch Running Config Change</td>
<td>For use with Cisco devices only. Detects running config information changes in the device.</td>
</tr>
</tbody>
</table>

Before working with this property, several configuration tasks must be performed. See Appendix 5: Using Network Device Compliance Policies.

Restrict Actions

This section provides an overview of the CounterACT Restrict actions available with the Switch Plugin.

The following restrict actions are available:

- Access Port ACL
- Assign Security Group Tag
- Assign to VLAN
- Endpoint Address ACL
- Switch Block

Access Port ACL

Use the Access Port ACL action to define an ACL that addresses one or more than one access control scenario, which is then applied to an endpoint’s switch access port. Access control scenarios are typically role or classification driven, for example, registered guest or compliance, and not endpoint IP specific. For example, implement an ACL action that denies corporate network access to guests but permits Internet access, regardless of endpoint IP address (no IP address dependency).

In the ACL configuration, take advantage of the full set of switch capabilities. CounterACT does not inspect and does not alter the provided content; the plugin’s role is one of delivery vehicle to provision a network switch.
All rules of an Access Port ACL are defined in the Access Port ACL Rules pane of the action.

When defining an Access Port ACL, you must follow the switch’s rules about allowed ACL name and configuration content. For example, if a remark rule cannot be manually added to a switch access list, CounterACT cannot perform it using the Access Port ACL action. Therefore, do not include such a rule.

At any given time, only one ACL action, either the Access Port ACL action or the Endpoint Address ACL action, can be enabled for use. To switch between the enablement of these two actions, see the procedure in acl_action_type.

For the ACL capabilities that are available to use with the Switch Plugin for supported, vendor switches, see Appendix 6, section Switch Vendor ACL Support.

Switch Plugin Garbage Collection: By default, once an hour, the plugin releases from a switch those Access Port ACLs that are not in use because the Access Port ACL action has been canceled for the relevant endpoint. Per endpoint, the operation removes the Access Port ACL from the specific port (the access group). To modify the default, removal period, contact customer support at support@forescout.com.

Assign Security Group Tag

Use the Assign Security Group Tag action to assign a Security Group Tag (SGT) to CounterACT-detected endpoints. Endpoints with an assigned SGT are connected to a managed Cisco switch in a Cisco TrustSec domain. An SGT is a number in the range of 1 - 65,535.
There might be Cisco switches that accept a lower number for the maximum SGT, for example, 65,533 or 65,519. Prior to using the Assign Security Group Tag action, make sure to verify the SGT range accepted by the managed Cisco switches in your organization's Cisco TrustSec domain.

For an overview of Switch Plugin support of the Security Group Tagging functionality of a Cisco TrustSec domain, see Security Group Tagging Configuration.

When the Assign Security Group Tag action is currently included in existing policies and the advanced configuration flag `assign_sgt` is disabled, the action is marked as Obsolete in the relevant policies. For details about this flag, see Advanced configuration flags, Enable a Feature.

The applied Assign Security Group Tag action can be canceled for CounterACT-detected endpoints. Action cancellation is accomplished either

- Manually - in the NAC tab > Detections pane > right-click an applicable endpoint entry > Cancel Actions > select Undo Security Group Tag Assignment.

- By policy evaluation - when CounterACT-detected endpoints no longer match the policy condition associated with the applied action.

Assign to VLAN

Use the Assign to VLAN action to assign endpoints to a VLAN, rather than turning off their switch ports. This enables secured remote connection to endpoints for the purpose of deploying patches, but still prevents the propagation of unwanted traffic to other sections of the network.
- With managed Alcatel switches, do not use VLAN 1 with the *Assign to VLAN* action. The switch does not allow endpoint assignments to the VLAN 1 of general ports.

- With managed Comtec, DASAN and ExtremeXOS switches, using the *Assign to VLAN* action requires that both CLI and SNMP credentials are configured and have write permission. This requirement is due to the fact that for these switches the plugin uses both CLI (assign port) and SNMP (bounce port) to perform the action.

- With managed H3C switches, when the plugin uses CLI to perform the *Assign to VLAN* action, be aware that as part of completing the *Assign to VLAN* action, the plugin uses SNMP to bounce the port on the switch. Therefore, ensure that the SNMP community, used by the plugin, is configured on the switch with read/write capability.

- With managed Huawei switches:
 - If the plugin is configured to use CLI communication, the plugin applies the *Assign to VLAN* action using CLI.
 - As part of completing the *Assign to VLAN* action, the plugin uses SNMP to bounce the port on the switch. Therefore, ensure that the SNMP community, used by the plugin, is configured on the switch with read/write capability.
 - When the plugin applies the *Assign to VLAN* action using CLI, then in order for the plugin to bounce Huawei hybrid PoE (Power over Ethernet) ports, as part of completing the *Assign to VLAN* action on endpoints connected to such ports, the configuration flag `cli_hybrid_port_bounce_poe` must be enabled. For details about enabling this flag, see Appendix 2: Troubleshooting, Workarounds and Feature Functionality Support.

- With a managed 3COM switch model 4400, when the Switch Plugin applies the *Assign to VLAN* action on endpoints connected to this switch model, there is a difficulty to attain electrical shut down of the newly assigned ports as part of the bounce operation initiated by the plugin. Since the plugin cannot shut down these newly assigned ports, endpoints are not assigned their new IP address and the action fails. To successfully apply the *Assign to VLAN* action on endpoints connected to this switch model, it is recommended to have SecureConnector installed on these endpoints.
When the Switch Plugin applies the **Assign to VLAN** action using a VLAN that is tagged on the port, the VLAN becomes untagged on the port. This behavior does not impair **Assign to VLAN** functionality; when the applied **Assign to VLAN** action is cancelled, the untagged VLAN is deleted from the port.

- For the **Assign to VLAN** action, ForeScout recommends to avoid the use of a VLAN that either is or might be tagged on a port to which endpoints are connected. Use of a tagged VLAN that is the port's voice VLAN causes the **Assign to VLAN** action to fail.

The **Assign to VLAN** action is not supported for the VoIP device if there is a VoIP device between the switch and the endpoint (a VoIP port with a connected VoIP phone and a connected PC behind the phone). The action is supported for the endpoint and requires that either one of the following is in effect:

- SecureConnector is installed in the endpoint.
- The global switch VoIP port protection is overridden. See [Global Configuration Options for the Switch Plugin](#).

See [Appendix 3: Setting Up a VLAN](#) for details about how to create an isolated VLAN with secured access.

Endpoint Address ACL

Use the **Endpoint Address ACL** action to define and apply any of the following, connected endpoint handling:

- **IP ACL**: Instruct a switch to close (ACL rule) or to open (ACL exception) network zones, services or protocols to either traffic to or traffic from specific, endpoint IP addresses connected to the switch.

The option **Use Basic ACL on action failure** is not supported for Juniper switches.
- **MAC ACL**: Instruct a switch to block all traffic sent from the affected, endpoint MAC address.

At any given time, only one ACL action, either the *Access Port ACL* action or the *Endpoint Address ACL* action, can be enabled for use. To switch between the enablement of these two actions, see the procedure in `acl_action_type`.

- When the plugin applies the *Endpoint Address ACL* action on a Brocade layer 3 switch interface that is included in a Brocade virtual interface, the plugin applies this action on the Brocade virtual interface and not on the individual, target interface. Doing so, results in the *Endpoint Address ACL action* being applied on every interface that is included in the Brocade virtual interface.

For the ACL capabilities that are available to use with the Switch Plugin for supported, vendor switches, see Appendix 6, section *Switch Vendor ACL Support*.

- **Switch Plugin Garbage Collection**: By default, once an hour, the plugin releases from a switch those IP ACLs and MAC ACLs that are not in use because the *Endpoint Address ACL* action has been canceled for the relevant endpoint. Per endpoint, the operation removes both the relevant rules from the switch IP access list and the ACL from the specific port (the access group). To modify the default, removal period, contact customer support at `support@forescout.com`.

Switch Block

Use the *Switch Block* action to completely isolate endpoints from your network by turning off their switch port and preventing endpoints from communicating with the network.
If there is a VoIP device between the switch and the endpoint, that is, a VoIP port with a connected VoIP phone and a connected PC behind the phone, using the Switch Block action requires that global switch VoIP port protection is overridden. See Global Configuration Options for the Switch Plugin.

Action Impact

When using the Switch Block action either in a policy or by manual application, be aware of the following impact:

- Application of the Switch Block action on detected endpoints that match the Host is online property of a policy condition results in these endpoints no longer matching the Host is online property. Overlooking this policy condition change might trigger other, unintended policy re-evaluation of the affected endpoints.

Construct a policy rule condition that ensures matching endpoints that are online yet also unaffected by the Switch Block action, by combining the following criteria in the rule's condition:

- Host is online AND Not Switch Port Action - Blocked

Working with Restrict Actions

To work with restrict actions, you can:

- Manually apply these actions on endpoints from the Console.
- Create policies that carry out these actions.

To manually define an action at the Console:

1. Select the NAC icon from the Console toolbar. The NAC tab opens.
2. In the Detections pane, right-click an endpoint and select Restrict.
3. Select any one of the restrict actions Access Port ACL, Assign Security Group Tag, Assign to VLAN, Endpoint Address ACL or Switch Block.
To define an action via a CounterACT policy:

1. Select the Policy icon from the Console toolbar. The Policy tab opens.
2. In the Policy Manager pane, select Add and create a policy.
3. In the Action section of the policy, select one of Access Port ACL, Assign Security Group Tag, Assign to VLAN, Endpoint Address ACL or Switch Block. The associated, action definition dialog opens.

For example:

Action Thresholds

Action thresholds are designed to automatically implement safeguards when rolling out policy actions. Consider a situation in which you defined multiple
policies that utilize Access Port ACL, Assign to VLAN, Endpoint Address ACL and Switch Block actions. If an extensive number of endpoints match these policies, you may block more network endpoints than you anticipated.

An action threshold is the maximum percentage of endpoints that can be controlled by a specific action type defined at a single CounterACT device. By working with thresholds, you gain more control over how many network endpoints are simultaneously restricted in one way or another. Refer to the CounterACT Console User Manual (Policy Management > Policy Safety Features > Working with Action Thresholds) for details.

The following table lists the default action thresholds for restrict actions:

<table>
<thead>
<tr>
<th>Restrict Action</th>
<th>Default Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Port ACL</td>
<td>2%</td>
</tr>
<tr>
<td>Assign to VLAN</td>
<td>2%</td>
</tr>
<tr>
<td>Endpoint Address ACL</td>
<td>2%</td>
</tr>
<tr>
<td>Switch Block</td>
<td>2%</td>
</tr>
</tbody>
</table>

Remediate Actions

This section provides an overview of the CounterACT Remediate actions available with the Switch Plugin. The following remediate actions are available:

- Expedite IP Discovery

Expedite IP Discovery

Use the Expedite IP Discovery action to address situations of delayed endpoint IP discovery. The action expedites the resolution of endpoint IP addresses (IP discovery resolve requests) by the Switch Plugin querying the ARP table of designated, adjacent, L3-enabled network devices.
Symptom of Delayed Endpoint IP Discovery

Consider using the action if you identify a high failure rate of actions that is due to the IP address of the detected endpoint being unknown (unresolved).

Root Causes of Delayed Endpoint IP Discovery

Delayed endpoint IP discovery can be caused by any of the following reasons:

- Endpoint is connected to an L2 network device
- Connecting network device does not permit IP discovery
- No configured SPAN port (traffic mirroring is turned off)
- Misconfigured SPAN port
- Regular polling of connecting network device or an adjacent upstream device is too slow

Action Usage Dependencies

In order to use the action, verify the following:

- The detected endpoints are connected to an access switch that is configured in the Switch Plugin.
- In the Switch Plugin configuration, the access switch is assigned to a minimum of one Connectivity Group; configured using either the Add Switch wizard or the Edit Switch window, Permissions > Advanced > IP to MAC mapping section. See IP to MAC Mapping.
- At least one L3-enabled network device is configured in the Switch Plugin that:
 - has the option Read – IP to MAC mapping enabled; configured using either the Add Switch wizard or the Edit Switch window, Permissions > ARP Permissions section. See ARP Permissions.
 - has the option Allow IP Discovery from Connectivity Group enabled; CONFIGURED using either the Add Switch wizard or the Edit Switch window, Permissions > Advanced > IP to MAC mapping section. See IP to MAC Mapping.
 - is assigned to the same Connectivity Group as the access switch. See IP to MAC Mapping.
- The ip2mac_aggregation_interval advanced configuration flag is configured with the appropriate interval. See Advanced configuration flags.

A Connectivity Group defines a group of adjacent network devices (any combination of L2, L3-enabled, L2/L3-enabled). When the access switch, to which detected endpoints are connected, cannot be used to resolve endpoint IP addresses, and the Switch Plugin performs the Expedite IP Discovery action:

1. The plugin queries the Connectivity Group’s L3-enabled network devices that are configured to Allow IP Discovery from Connectivity Group.
2. The plugin obtains their ARP table data (IP to MAC mapping) and resolves detected endpoint IP addresses.

Remediate Delayed Endpoint IP Discovery

To remediate situations of delayed endpoint IP discovery, create a policy that identifies managed endpoints with unknown (unresolved) IP address and performs the Expedite IP Discovery action on such endpoints.
Detect and Ignore Switch Virtual Interfaces

The Switch Plugin does not properly identify the Switch Virtual Interfaces (SVIs) of managed switches; the plugin detects these SVIs as separate interfaces. In large deployments having an extensive number of SVIs, detected SVIs are displayed as separate interfaces in the Console Detections pane. This impacts usability as the Detections pane becomes cluttered and causes configuration overhead, for example, when defining a policy Scope.

Create a CounterACT policy that detects and ignores SVIs and removes them from display in the Console Detections pane.

To detect and ignore SVI and remove from Console display:

1. Create a new custom policy.
2. Define the main rule condition to match the Switch Virtual Interface property.
3. Define the main rule action as Add to Group.
4. In the Parameters tab of the action, configure the following settings:
 a. Clear the Expires when host no longer matches the policy checkbox.
 b. Select the Ignored IPs option.

These settings result in a detected/matched SVI remaining in the Ignored IPs group, even if the SVI subsequently, no longer matches the policy criteria.

When the policy runs, if an SVI is detected on the managed switch, then the SVI is added to the Ignored IP Manager and is excluded from policy inspection. These IP addresses are displayed in the Permanent tab of the Ignored IPs Manager and remain there until manually removed.

5. In the Filters tree of the Detections pane, select Segments rather than All. By selecting this filter, ignored SVIs do not appear in the Detections pane display.
Remove Switch Virtual Interfaces from the Ignored IPs Group

Manually remove an SVI from the Ignored IPs group via the Ignore IP Manager window.

To remove an SVI entry from the Ignored IPs group:

1. In the Ignore IP Manager window, select the Permanent tab.
2. Select the Key/IP Address of the SVI entry you want to remove and select Remove.

Additionally, SVIs that are inactive for a time extending beyond the time defined in the Purge Inactivity Timeout option (Options > NAC > Time Settings), are automatically removed from the Ignored IPs group.

Clear ACLs from All Switch Ports

Eliminate ACLs from a switch, whether CounterACT Endpoint Address ACLs or a non-CounterACT defined ACL.

To clear ACLs:

1. In the Switch pane, select Stop All... and stop Switch Plugin operation in all your CounterACT devices.
2. In the Switch pane, select one or more switches, right-click and select Clear ACLs.

The Clear ACLs dialog box opens.
3. Do one of the following:
 - Select **Clear CounterACT ACLs** to release in a selected switch the following CounterACT applied, Endpoint Address ACLs: the default IP ACL, *forescout_acl*, and any custom IP ACL. For a Juniper switch, the ACL firewall filter, whether the default *forescout_acl* or a custom named one, can simultaneously contain both IP ACL rules and MAC ACL rules.
 - Select **Clear other ACL** and type, in the associated field, the name of a non-CounterACT defined ACL to release that ACL in a selected switch.

4. Select **OK**.
 A new process starts, which logs in to each selected switch, and performs the following actions:
 - Releases the identified ACL(s) from all ports in the switch.
 - Removes the identified ACL(s) from the switch ACL list.

The **Clear ACLs** results window opens and displays the results of the requested clear action.

The **Clear ACLs** results window displays the following information for each selected switch:

- **Clear ACL Summary** – With status **Succeeded**, **Failed** or **Not applicable**

For switches that support ACL actions (Cisco, Brocade/Foundry, Enterasys and Juniper), the following results are also displayed:

- **Clear ACL from Switch ACL List** – Result can be **Not found**, **Cleared** or **Error** (if the clear failed)

- **Clear ACL from Switch Ports**:
 - Result can be **Not found**, **Cleared** (with number of cleared interfaces) or **Error** (if the clear failed)
Result per interface, Cleared with the name of the ACL cleared or Failed to clear with an error message if the clear failed

Clear Alias from Switch Ports - the process also removes the ACL part from the port alias.

Switch Setup

This section describes the configuration that must be applied in the switches of specific vendors to enable these switches to interoperate with the Switch Plugin.

- Configuring Cisco Switches for SNMPv3
- Configuring H3C Switches for SNMP
- Configuring Huawei Switches
- Configuring NETCONF on Juniper EX Series Switches
- Configuring MAC Notification Traps on Cisco Switches
- Configuring Switches for ACL Integration

Configuring Cisco Switches for SNMPv3

In order for the Switch Plugin to use SNMPv3 to communicate with a Cisco switch, perform the following on the Cisco switch:

- Define the Group Configuration
- Define the User Configuration
- Define the View Configuration

Define the Group Configuration

If the Cisco switch supports match prefix, enter the following command lines in the switch to define the group:

1. `snmp-server group <group name> v3 auth read <view name> write <view name>`
2. `snmp-server group <group name> v3 priv context vlan`
3. `snmp-server group <group name> v3 priv context vlan- match prefix`

If the Cisco switch does not support match prefix, enter the following command lines in the switch:

1. `snmp-server group <group name> v3 auth read <view name> write <view name> (no context)`
2. For each defined switch VLAN (VLAN context), enter the following line:
 `snmp-server group <group name> v3 auth context vlan-<VLAN number> read <view name> write <view name>`

Example: The switch does not support match prefix, the group to define is nacgroup, the view to define is nacview and VLANs 4, 19 and 27 are defined on the switch. The following command lines would be entered:

`snmp-server group nacgroup v3 auth read nacview write nacview`
Define the User Configuration

Enter the following command line in the switch to define the user:

```
snmp-server user <user name> <group name> v3 auth <authentication protocol> <authentication password> [priv <privacy protocol> <privacy password>]
```

Command line parameters appearing within brackets [] are optional.

Example: User cisco belongs to group nacgroup that works with the authentication protocol sha and the authentication password cisco1234, the following command line would be entered:

```
snmp-server user cisco nacgroup v3 auth sha cisco1234
```

Define the View Configuration

When defining the view, include the entire SNMP view (.iso). Enter the following command line in the switch to define the view:

```
snmp-server view <view name> iso included
```

Configuring H3C Switches for SNMP

When SNMP is used by the plugin to interoperate with managed H3C switches having hybrid ports, the following switch configuration is required:

- On a hybrid port, configure all candidate VLANs as untagged.

```
[Net3_G12-1/0/0/2]
[Net3_G12-1/0/0/2]
[Net3_G12-1/0/0/2]dis this
# interface GigabitEthernet1/0/21
port link-mode bridge
port link-type hybrid
undo port hybrid vlan 1
port hybrid vlan 111 to 313 untagged
port hybrid pvid vlan 111
voice vlan 313 enable
#
return
[Net3_G12-1/0/0/2]
```

Configuring Huawei Switches

Switch Plugin management of hybrid ports on a Huawei switch – learning VLAN information and applying switch actions on the ports – requires including the following port definition statement immediately after the pvid statement, per hybrid port on the switch:

- undo port hybrid vlan 1
Configuring NETCONF on Juniper EX Series Switches

The Juniper Junos operating system supports NETCONF, an XML-based protocol that enables users to install, manipulate and delete the configuration of network devices. When configuring a Juniper EX series switch, the procedures described in Add Switches to the Switch Plugin apply, with one exception - you must use NETCONF to query the switch for relevant data and to control the switch. To work with NETCONF, you must enable the service on the Juniper switch, as described here, and configure SSH credentials at the Switch Plugin (see CLI Configuration).

Do not log in as root for CLI access to Juniper EX series switches; use (or create) another administrator login.

To configure NETCONF using the command-line console of the switch:
1. Type the following at the command line:
 - cli
 - configure
 - set system services netconf ssh

To configure NETCONF using the Switch Configuration window of the switch:
1. Select the following options:
 - CLI Tools
 - Point & Click CLI
 - system
 - services
 - netconf
 - ssh
 - OK

Configuring MAC Notification Traps on Cisco Switches

SNMP MAC notification traps are supported for Cisco switches only. Configure Cisco switches to send SNMP MAC notification traps to CounterACT.

CounterACT provides an fstool command to support configuring single Cisco switches to send these traps. You can also configure the traps directly from the switch using the CLI.

In addition to configuring Cisco switches to send SNMP MAC notification traps, the Switch Plugin must be enabled to handle the SNMP traps it receives from managed switch devices. Accomplish this by selecting in the Console, the Handle SNMP Traps checkbox in the Edit general parameters window.
Configuring MAC Notification Traps – Configuration from CounterACT

Configure a single, managed Cisco switch to send its SNMP MAC notification traps to CounterACT. This requires, first, running an `fstool` command from the CounterACT device and then, second, running switch CLI commands.

To configure a single Cisco switch:

1. Run the following from the CounterACT device:

   ```
   fstool sw traps
   ```

 Output similar to the following will be displayed:

 CounterACT Utility Tool
   ~~~~~~~~~~~~~~~~~~~~~~~
   
   SNMP Switch Configuration for MAC Notification Traps
   
   Please wait, reading switch list from database...
   
   Open database [trails] – Success
   
   The following switches are configured to work on the appliance:
   
   2. 10.37.1.250 using SNMP version [2] vendor [nortel]
   5. 10.33.1.250 using SNMP version [2] vendor [cisco]
   6. 10.39.1.248 using NETCONF vendor [juniper]
   9. 10.34.1.250 using SNMP version [2] vendor [extreme]
   
   Select a switch by entering its number in the list. For multiple switch selection, separate numbers by commas.
   
   Select switch: 5
   
   Connecting switch [10.33.1.250]
   
   (e)nable Notification/(d)isable Notification: e
   
   Starting Switch Configuration for MAC Notification Traps
   
   Updating Switch Succeeded
   
   ** Please Add This Line Manually to Switch Configuration:
   
   ```
   snmp-server host <CA Address> <Community>
   ```
   
   Example: Switch ports - before `fstool sw traps` configuration
   
   ```
   interface GigabitEthernet1/0/2
   switchport access vlan 301
   switchport mode access
   ```
   ```
   interface GigabitEthernet1/0/3
   switchport access vlan 302
   switchport mode access
   ```
   ```
   interface GigabitEthernet1/0/4
   switchport access vlan 303
   switchport mode access
   ```
   
   Example: Switch ports - after `fstool sw traps` configuration
2. Enter the switch CLI in Enable mode and type the following:
   ```
   configure terminal
   ```

3. Type the following:
   ```
   snmp-server host <Appliance_IP_address> <community>
   ```
   Use the IP address of the CounterACT device that manages this switch.

**Configuring MAC Notification Traps – Configuration from the Switch**

Configure the sending of SNMP MAC notification traps directly from Cisco switches using the CLI. This is recommended if you have a central configuration tool for all switches that allows making this change once and applying it to all the switches.

The configuration commands to use vary, depending on the version of Cisco IOS running on the switches.

**Configuring MAC Notification Traps – IOS 12.2 (35) and Below**

The configuration from the CLI of the switch is performed, for example, as follows:

1. ```
   snmp-server enable traps MAC-Notification
   ```

2. ```
   mac-address-table notification
   ```

3. ```
   snmp-server host <CounterACT_device_IP_address> <community>
   ```
   Use the IP address of the CounterACT device that manages these switches.

Each non-trunk interface of the switch should be configured (using the command interface FastEthernet0/):

4. ```
   snmp trap mac-notification added
   ```
   to receive a MAC notification trap on link-up

5. ```
   snmp trap mac-notification removed
   ```
   to receive a MAC notification trap on link-down

**Configuring MAC Notification Traps – IOS 12.2 (55) and Above**

The configuration from the CLI of the switch is performed, for example, as follows:

1. ```
   snmp-server enable traps MAC-Notification
   ```

2. ```
   mac-address-table notification change
   ```
3. `snmp-server host <CounterACT_device_IP_address> <community>`
   Use the IP address of the CounterACT device that manages these switches.

   Each non-trunk interface of the switch should be configured (using the command `interface FastEthernet0/`):

   4. `snmp trap mac-notification change added` – to receive an SNMP MAC notification trap on link-up
   5. `snmp trap mac-notification change removed` – to receive an SNMP MAC notification trap on link-down

### Configuring Switches for ACL Integration

In order for ACL actions to be applied in managed switches, you must allow command-line (CLI) access from the CounterACT device to the switches.

**To set up the switch:**

1. Create a privilege level with access to at least the following commands. (You can skip this step by using privilege level 15.)

<table>
<thead>
<tr>
<th>Context</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>exec</td>
<td>show running-config</td>
</tr>
<tr>
<td>exec</td>
<td>show access-lists</td>
</tr>
<tr>
<td>exec</td>
<td>config t</td>
</tr>
<tr>
<td>configure</td>
<td>access-list</td>
</tr>
<tr>
<td>configure</td>
<td>interface</td>
</tr>
<tr>
<td>configure</td>
<td>ip access-list</td>
</tr>
<tr>
<td>interface</td>
<td>ip access-group</td>
</tr>
<tr>
<td>ipenacl</td>
<td>permit</td>
</tr>
<tr>
<td>ipenacl</td>
<td>deny</td>
</tr>
</tbody>
</table>

   The following example sets privilege level 7:

   ```
   enable secret level 7 0 <enable_password>
   privilege ipenacl level 7 permit
   privilege ipenacl level 7 deny
   privilege interface level 7 ip access-group
   privilege configure level 7 access-list
   privilege configure level 7 interface
   privilege configure level 7 ip access-list
   privilege exec level 7 show running-config
   privilege exec level 7 show access-lists
   privilege exec level 7 config t
   ```

2. Set up a user name with a password and a privileged password. For example:

   ```
   username test privilege 7 secret 0 <initial_password>
   ```

3. If there is an ACL controlling SSH access to the switch, modify the ACL to permit the Switch Plugin to access the switch.
4. If you choose to manually configure the ports on which the ACL will be applied, do so by using a command like the following for the appropriate interfaces:

```
interface <interface_name>
ip access-group forescout_acl in
```

**Layer 3 Switch Support for ACL**

Layer 3 switches (for example, Cisco ISR Catalyst 2801) do not support full-featured port-based ACLs. These switches can still be used for ACL blocking.

**To work with these switches:**

1. For Access Port ACL and Endpoint Address ACL, verify that the switch supports Layer 3 routing.
2. For Endpoint Address ACL, add the following command to the ACL configuration on the relevant interface VLAN on the switch:

```
ip access-group forescout_acl in
```
3. For Access Port ACL, select **Enable ACL** in the Switch Plugin ACL page (see [ACL Configuration – Cisco and Brocade/Foundry Switches](#)).
4. For Endpoint Address ACL, configure the Switch Plugin ACL page (see [ACL Configuration – Cisco and Brocade/Foundry Switches](#)) as follows:
   a. Select **Enable ACL**.
   b. Select **Block hosts learned via downstream devices**.
   c. Clear **Add ACL access group to physical ports**.
   d. Leave **Add CounterACT authentication servers permit rules** selected.

Some switch devices (for example, Cisco Series 800 Routers) do not have a MAC table. The Endpoint Address ACL action cannot be applied because the Switch Plugin does not know at which port the endpoint is connected to the switch and therefore the ACL cannot be set.
Appendix 1: See and Control Capabilities Summary

The following table summarizes the SEE and CONTROL capabilities that the Switch Plugin supports per network device vendor.

- A highlighted cell identifies a supported capability.
- SNMP/CLI/Netconf: The communication protocol used. *Unless otherwise indicated, the listed protocol is used to accomplish both reads and writes.*

For detailed information about specific, switch vendor models and operating system versions that are validated for Switch Plugin management, reference the [CounterACT Network Devices Compatibility Matrix](#), which is available on the ForeScout customer support portal.

<table>
<thead>
<tr>
<th>Network Device Vendor</th>
<th>SEE</th>
<th>CONTROL</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>MAC Table</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>ARP Table</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>SNMP Trap Receipt</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Link Up/Down</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Auto Discovery</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>VoIP Detection</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Resolve PoE Port Info</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Assign to VLAN Action</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Switch Block Action</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>ACL Actions</strong></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 3COM
- SNMP
- SNMP
- SNMP
- SNMP
- SNMP/CLI
- SNMP

### Alaxala
- SNMP
- SNMP
- SNMP

### Alcatel
- SNMP
- SNMP
- SNMP
- SNMP
- SNMP

### Apresia
- SNMP
- SNMP
- CDP
- SNMP
- SNMP

### Arista
- CLI
- CLI
- CDP
- CLI
- CLI

### Avaya(*) (Nortel)
- SNMP
- SNMP
- LLDP
- SNMP
- SNMP

### Brocade/Foundry
- SNMP
- SNMP
- FDP
- SNMP
- SNMP
- CLI
- Endpoint Address ACL

### Cisco(*)
- SNMP/CLI
- SNMP/CLI
- MAC Notification traps also supported
- CDP
- SNMP/CLI
- SNMP
- SNMP/CLI
- CLI
- Endpoint Address ACL, Access Port ACL

### Comtec
- SNMP
- read-SNMP, write-CLI
- CLI
- SNMP

### DASAN
- SNMP
- read-SNMP, write-CLI
- CLI
- SNMP

### Dax
- SNMP
- SNMP
- SNMP
- SNMP

### Dell
- SNMP
- SNMP
- SNMP
- SNMP
<table>
<thead>
<tr>
<th>Network Device Vendor</th>
<th>MAC Table</th>
<th>ARP Table</th>
<th>SNMP Trap Receipt</th>
<th>Auto Discovery</th>
<th>VoIP Detection</th>
<th>Resolve PoE Port Info</th>
<th>Assign to VLAN Action</th>
<th>Switch Block Action</th>
<th>ACL Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-Link</td>
<td>SNMP</td>
<td>SNMP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SNMP</td>
<td>SNMP</td>
<td></td>
</tr>
<tr>
<td>Enterasys</td>
<td>SNMP</td>
<td></td>
<td>read-SNMP/CLI,</td>
<td>LLDP</td>
<td>SNMP</td>
<td></td>
<td>SNMP</td>
<td>SNP</td>
<td></td>
</tr>
<tr>
<td>Enterasys Matrix N-Series</td>
<td>SNMP</td>
<td></td>
<td>read-SNMP/CLI,</td>
<td>LLDP</td>
<td>SNMP</td>
<td></td>
<td>SNP</td>
<td>SNP</td>
<td>CLI Endpoint Address ACL</td>
</tr>
<tr>
<td>Extreme</td>
<td>SNMP</td>
<td>SNMP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SNP</td>
<td>SNP</td>
<td></td>
</tr>
<tr>
<td>Extreme XOS</td>
<td>SNMP</td>
<td>SNMP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SNP/CLI</td>
<td>SNP</td>
<td></td>
</tr>
<tr>
<td>Force10</td>
<td>SNMP</td>
<td>SNMP</td>
<td>SNMP</td>
<td></td>
<td></td>
<td></td>
<td>SNP</td>
<td>SNP</td>
<td></td>
</tr>
<tr>
<td>Generic</td>
<td>SNMP</td>
<td>SNMP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SNP</td>
<td>SNP</td>
<td></td>
</tr>
<tr>
<td>H3C</td>
<td>SNMP</td>
<td>SNMP</td>
<td>LLDP</td>
<td>SNP</td>
<td></td>
<td></td>
<td>SNP/CLI</td>
<td>SNP</td>
<td></td>
</tr>
<tr>
<td>Hirschmann</td>
<td>SNMP</td>
<td>SNMP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SNP</td>
<td>SNP</td>
<td></td>
</tr>
<tr>
<td>HPE (Comware OS)</td>
<td>CLI</td>
<td>CLI</td>
<td></td>
<td>CLI</td>
<td></td>
<td></td>
<td>CLI</td>
<td>SNP</td>
<td></td>
</tr>
<tr>
<td>HPE (Provision/ProCurve OS)</td>
<td>SNMP</td>
<td>SNMP</td>
<td>LLDP</td>
<td>SNP</td>
<td></td>
<td></td>
<td>SNP</td>
<td>SNP</td>
<td></td>
</tr>
<tr>
<td>Huawei</td>
<td>SNMP</td>
<td>SNMP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SNP/CLI</td>
<td>SNP</td>
<td></td>
</tr>
<tr>
<td>Juniper EX</td>
<td>Netconf</td>
<td>Netconf</td>
<td>Netconf</td>
<td></td>
<td></td>
<td></td>
<td>Netconf</td>
<td>Netconf</td>
<td>Netconf Endpoint Address ACL</td>
</tr>
<tr>
<td>Linksys</td>
<td>SNMP</td>
<td>SNMP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SNP</td>
<td>SNP</td>
<td></td>
</tr>
<tr>
<td>NEC</td>
<td>SNMP</td>
<td>SNMP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SNP</td>
<td>SNP</td>
<td></td>
</tr>
<tr>
<td>Firewall: Check Point</td>
<td>CLI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firewall: Cisco ASA</td>
<td>CLI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firewall: Forcepoint Stonesoft</td>
<td>CLI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firewall: Fortinet</td>
<td>CLI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firewall: Juniper SRX</td>
<td>CLI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network Device Vendor</td>
<td>MAC Table</td>
<td>ARP Table</td>
<td>SNMP Trap Receipt Link Up/Down</td>
<td>Auto Discovery</td>
<td>VoIP Detection</td>
<td>Resolve PoE Port Info</td>
<td>Assign to VLAN Action</td>
<td>Switch Block Action</td>
<td>ACL Actions</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>--------------------------------</td>
<td>----------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Firewall: Palo Alto Networks</td>
<td>CLI read only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router: Linux OS</td>
<td>CLI read only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(†) For the Avaya switch model ERS 4850GTS-PWR+, the plugin does not support its Refresh ARP table capability (clearing redundant IP addresses that are associated with a MAC address).

(*) For managed Cisco Small Business 300 Series switches:
- SNMP is the only read method used to detect VoIP port configuration
- The plugin does not support applying ACL actions on the Cisco Small Business 300 Series switch, since the plugin interoperates with these switches using SNMP only and ACL support requires plugin-switch CLI interoperation.
Appendix 2: Troubleshooting, Workarounds and Feature Functionality Support

This appendix covers the following topics:

- Troubleshooting
- Configuration Flags for Workarounds
- Configuration Flags Supporting Plugin Functionality

Troubleshooting

This section provides troubleshooting solutions for the following issues:

- Plugin VoIP Detection for Cisco Trunk Port Configuration Exception

Plugin VoIP Detection for Cisco Trunk Port Configuration Exception

For exceptional situations in which the involved Cisco trunk ports cannot have their voice VLANs configured using `switchport voice vlan <n>`, the Switch Plugin can still provide VoIP detection for these trunk ports, however, the following configurations must be in effect:

Cisco Switch Configuration

- Each involved Cisco switch trunk port must be configured with only two, allowed VLANs.
- One of these two VLANs must be configured as a native VLAN

Trunk port configuration example:

```
switchport trunk native vlan 309
switchport trunk allowed vlan 309,311
```

Switch Plugin Configuration

- In the Advanced configuration flags field of the Edit general parameters window, enable the `determine_voip_by_allowed_vlans` flag as follows:

  ```
cisco:determine_voip_by_allowed_vlans:on
  ```

  By default, this flag is disabled (flag assignment is off).

- The plugin is configured to manage the involved Cisco switch(es) using either one of the following MAC read/write methods:
  - SNMP (RW) and CLI
  - SNMP (RO) and CLI

In the Console's Switch Plugin pane, select Add/Edit a switch > Permissions pane/tab > MAC Permissions section > MAC Read/Write Method field.
Configuration Flags for Workarounds

This section provides workarounds that address device management issues. Configuration flags are used to enabled/disabled each of these workarounds. The following issues are addressed:

- **Disable Reporting of Last Trap Received**
- **Control the Update Frequency of Number of MACs Found**
- **Support for Handling Multiple Entries for Same MAC**
- **Support for VoIP for Enterasys Switches**
- **Ignore Untagged Ports on Avaya (Nortel) Switches**
- **Pad MAC Addresses Missing Any Leading Zeros**
- **Ignore Link Down Traps After Assign to VLAN Action**

Configuration Flags address specific plugin switch management issues at the per switch level. Advanced configuration flags address issues at the global switch level and are enabled either for all plugin-managed switches or for all plugin-managed switches of a specific vendor.

**Disable Reporting of Last Trap Received**

**Issue:**

By default, the Console reports Last Trap Received information in the Switch pane. When there is a high frequency of traps received from the switch, the information that is retrieved for the Last Trap Received column in the Switch pane generates extensive traffic between CounterACT devices and the Console.

**Workaround:**

Use the new configuration flag, disable_trap_msgs_to_gui, to reduce the extensive amount of generated traffic. When activated, this flag halts the plugin's report of Last Trap Received information in the Switch pane. Activation of this flag affects all your configured switches.

**To activate this flag:**

1. In the Console, select Options > Switch > Options.... The Edit general parameters window opens.
2. In the Advanced configuration flags field, enter the statement:
   ```
   all:disable_trap_msgs_to_gui:on
   ```

Even if halted for the Switch pane, Last Trap Received information continues being reported in the plugin test results.

**To disable the feature, do either of the following actions:**

- Delete the string from the Advanced configuration flags field.
- Modify the string to be: `all:disable_trap_msgs_to_gui:off`.
Control the Update Frequency of Number of MACs Found

Issue:
In large deployments (multiple managed switches, multiple connecting endpoints), information retrieved for the Number of MACs found column in the Switch pane generates extensive traffic between the CounterACT devices and the Console.

Workaround:
Use two new configuration flags to reduce the extensive amount of generated traffic. When activated, these flags control the frequency at which the Number of MACs found information is updated for re-display. The flag's control is based on a defined percent of required, information change. For example, if the defined value of the flag is 0.05, then updates of Number of MACs found information will only occur if existing information changes by >= 5%.

Use these configuration flags, report_mac_status_threshold_global and report_mac_status_threshold, either in combination with each other or alone.

To globally activate this control for all your switches:
1. In the Console, select Options > Switch > Options.... The Edit general parameters window opens.
2. In the Advanced configuration flags field, enter the statement:
   all:report_mac_status_threshold_global:<decimal_value>, where provided value represents a percentage out of 100.
   The global activation value overrides the global default value of 0.01 (1%).

To globally disable the feature for all your switches:
- Delete the statement from the Advanced configuration flags field.

To activate this control per configured switch:
1. In the Console, select Options > Switch > switch entry > Edit > Permissions > Advanced... . The Switch Advanced Settings window opens.
2. In the Configuration flags field, enter the statement:
   report_mac_status_threshold:<decimal_value>, where provided value represents a percentage out of 100.
   A per switch activation value overrides the global value.
To disable the feature, do the following:

- Delete the statement from the **Configuration flags** field.

### Support for Handling Multiple Entries for Same MAC

**Issue:**

The Switch Plugin learns the same MAC address on more than one access port on a single switch, meaning, a single switch, one MAC address table and several entries in the table with same MAC. When this happens, the plugin might initiate unnecessary admission events and resolve host properties with inaccurate information. This issue might occur with endpoints having the following setup:

(a) Oracle/SUN Solaris M5000 box is installed and (b) the OBP (OpenBootProm) option (SPARC BIOS) set local mac-address is set to FALSE.

**Workaround:**

Instruct the Switch Plugin to ignore endpoints in which the same MAC address was learned on more than one access port by using the **Global Advanced Configuration Flags** feature.

This workaround is available for Cisco switches using CLI.

**To enable this feature:**

1. Select **Tools > Options** and then select **switch** from the **Options** pane.

2. In the **Advanced configuration flags** field of the Edit general parameters dialog box, type the following string:

   ```plaintext
cisco:cli_ignore_duplicate_mac:on
```

**To disable the feature, do either of the following actions:**

- Delete the string from the **Advanced configuration flags** field.
- Modify the string to be: `cisco:cli_ignore_duplicate_mac:off`. 
Support for VoIP for Enterasys Switches

Issue:
The plugin identifies VoIP ports on Enterasys switches as trunk ports instead of access ports.

Workaround:
Instruct the Switch Plugin to define VoIP ports as access ports by using the global advanced configuration flags feature, see Advanced configuration flags.

To enable this feature, in the Advanced configuration flags field of the Edit general parameters dialog box, type the following string:

```
enterasys:enable_voip:on.
```

To disable the feature, either delete the string or change it to

```
enterasys:enable_voip:off.
```

Ignore Untagged Ports on Avaya (Nortel) Switches

Issue:
The plugin defines non-voice ports on Avaya (Nortel) switches that belong to more than one VLAN as trunk ports; you might want to leave untagged ports that belong to more than one VLAN as access ports.

Workaround:
Instruct the Switch Plugin to leave untagged ports on Avaya (Nortel) switches as access ports, even when the plugin would normally define them as trunk ports, by using the global advanced configuration flags feature, see Advanced configuration flags.

To enable this feature, in the Advanced configuration flags field of the Edit general parameters dialog box, type the following string:

```
nortel:ignore_UntagAll:on.
```

To disable the feature, either delete the string or change it to

```
nortel:ignore_UntagAll:off.
```
Pad MAC Addresses Missing Any Leading Zeros

**Issue:**
With Linux routers running Check Point Firewall version EPSO 6.2, when the Switch Plugin reads the device ARP table to report the endpoint MAC-to-IP entries, the plugin erroneously invalidated any MAC address it received with skipped leading zeros (0) in the address sequence. For example, the 12 hexadecimal character MAC address 21:01:8e:0b:05:2f is stored by such Linux routers as the 9 hexadecimal character MAC address 21:1:8e:b:5:2f.

**Workaround:**
To correct this Linux router processing issue, use the pad_mac_addr configuration flag. By default, this flag is enabled per managed Linux router.

The enabled pad_mac_addr flag instructs the plugin to pad MAC addresses received from the Linux router with leading zeros, when found to be missing from the address sequence, before validating the address.

pad_mac_addr can be enabled/disabled on a per-device basis (configuration flag) and on a global device basis (advanced configuration flag). The per-device configuration of the flag always takes precedence over the global configuration of the flag.

**To enable/disable the flag per managed Linux Router:**

- **By default, this flag is enabled for managed Linux Routers**

1. In the Console, select Options > Switch > Linux router entry > Edit > Permissions > Advanced. The Switch Advanced Settings window opens.

2. In the Configuration flags field, perform either of the following:
   a. To disable the flag, enter the command:
      ```plaintext
      pad_mac_addr:off
      ```
   b. To enable the flag, enter the command:
      ```plaintext
      pad_mac_addr:on
      ```
      or delete the pad_mac_addr:off command from the Configuration flags field, which restores the per-device flag to its default value of on (enabled).

**To globally enable/disable the flag for all managed Linux Routers:**

- A per-device configuration of the flag always takes precedence over the global configuration of the flag.

1. In the Console, select Options > Switch > Options.... The Edit general parameters window opens.

2. In the Advanced configuration flags field, perform either of the following:
   a. To globally disable the flag, enter the statement:
      ```plaintext
      all:pad_mac_addr:off
      ```
b. To globally enable the flag, enter the statement:
   all:pad_mac_addr:on
   or delete the all:pad_mac_addr:off command from the Configuration flags field, which restores the global flag to its default value of on (enabled).

Ignore Link Down Traps After Assign to VLAN Action

Issue:
Following plugin apply of the Assign to VLAN action, which includes a bounce of the affected port, when a link down trap notification from the managed switch device was regularly received by the plugin with a delay of several seconds, the plugin handled this notification as an action failure and cancelled the applied action. This resulted in the plugin entering into an apply action-cancel action processing loop and the affected port continuously alternating between two VLANs.

Workaround:
Enable the advanced configuration flag ignore_received_link_down_traps to instruct the Switch Plugin to ignore receipt of link down traps for a defined period, following its application of the Assign to VLAN action. The flag affects all managed switches.

By default:
- The ignore_received_link_down_traps flag is disabled.
- The ignore period is 60 seconds.
- In local.properties, configure this ignore period with the fstool set properties command using the property
  conf.ignore_received_link_down_traps_period.value.

To globally enable/disable the flag for all managed switches:
1. In the Console, select Options > Switch > Options.... The Edit general parameters window opens.
2. In the Advanced configuration flags field, perform either of the following:
   a. To globally enable the flag, enter the statement:
      all:ignore_received_link_down_traps:on
   b. To globally disable the flag, enter the statement:
      all:ignore_received_link_down_traps:off
      or delete the all:ignore_received_link_down_traps:on statement from the Advanced configuration flags field.
Configuration Flags Supporting Plugin Functionality

This section describes configuration flags that must be used to support Switch Plugin feature functionality. The following configuration flags provide feature functionality support:

- cli_hybrid_port_bounce_poe

Configuration Flags address specific plugin switch management issues at the per switch level. Advanced configuration flags address issues at the global switch level and are enabled either for all plugin-managed switches or for all plugin-managed switches of a specific vendor.

cli_hybrid_port_bounce_poe

Enabling the cli_hybrid_port_bounce_poe configuration flag is required in order for the Switch Plugin to bounce Huawei switch hybrid PoE (Power over Ethernet) ports, as part of completing the Assign to VLAN action on endpoints connected to such ports.

By default, the cli_hybrid_port_bounce_poe flag is is disabled.

To enable/disable the flag per switch:

1. In the Console, select Options > Switch > Huawei switch entry > Edit > Permissions > Advanced. The Switch Advanced Settings window opens.

2. In the Configuration flags field, perform either of the following:
   a. To enable the flag, enter the statement:
      cli_hybrid_port_bounce_poe:on
   b. To disable the flag, enter the statement:
      cli_hybrid_port_bounce_poe:off
      or delete the cli_hybrid_port_bounce_poe:on statement from the Configuration flags field (restores the per-device flag to its default value of disabled).

You can globally enable/disable this configuration flag for all your managed Huawei switches. A per-device configuration of the flag always takes precedence over the global configuration of the flag.

To globally enable/disable the flag for all managed Huawei switches:

1. In the Console, select Options > Switch > Options. The Edit general parameters window opens.

2. In the Advanced configuration flags field, perform either of the following:
   a. To globally enable the flag, enter the statement:
      huawei:cli_hybrid_port_bounce_poe:on
b. To globally disable the flag, enter the statement:

```
huawei:cli_hybrid_port_bounce_poe:off
```

or delete the `huawei:cli_hybrid_port_bounce_poe:on` statement from the **Advanced configuration flags** field (globally restores the flag to its default value of disabled).
Appendix 3: Setting Up a VLAN

You can move endpoints to a VLAN, rather than turning off their switch ports. This enables secured remote connection to endpoints for the purpose of deploying patches, but still prevents unwanted traffic to other sections of the network. This type of blocking requires an isolated VLAN with secured access only. (The steps required to create such a VLAN are the same as those required to implement any other company-wide VLAN.)

To create an isolated VLAN with secured access only:

1. Choose an unused VLAN number.

2. Define the VLAN on the relevant routers—a single router if the VLAN is continuous among all managed switches, multiple routers if it is not. The term continuous here means that a broadcast packet in the VLAN on any managed switch is able to reach all other managed switches. This is true if all switches are interconnected using unrestricted trunk links.

3. (Recommended) Define the VLAN on every switch prior to the activation of the plugin. As a backup procedure, this is done by the Switch Plugin automatically when assigning a port to the VLAN on a switch that is not properly configured.

4. Define routing between the VLAN and the rest of the network. This step is not required in most environments, where routing protocols are dynamic.

5. Define a DHCP relay on the routers (ip helper address in Cisco terminology).

6. Define an address pool on the DHCP servers for this VLAN.

7. Restrict traffic between the VLAN and the rest of the network according to your access policy. This is usually done using an access list on the routers.

   You should allow:
   – DHCP traffic between the LAN and the DHCP servers
   – DNS traffic
   – Any other traffic allowed from the VLAN (for example, access to authentication servers which may result in un-quarantining, access to other company or Internet resources, etc.)

Deny all other traffic.
Appendix 4: MIBs Used by the Switch Plugin

This section lists switch MIB requirements. If the Switch Plugin test fails for a switch, the switch may not meet specific MIB requirements.

To see if a specific MIB exists on a switch, run the following command from the CounterACT device:

```
fstool run snmpwalk <switch_ip_address> -v <version> -c <community> <oid>
```

**General MIBs**

- .1.3.6.1.2.1.2.2.1.6
- .1.3.6.1.2.1.1.6.0
- .1.3.6.1.2.1.1.3.0
- .1.3.6.1.2.1.2.2.1.2
- .1.3.6.1.2.1.31.1.1.1.1
- .1.3.6.1.2.1.2.2.1.7
- .1.3.6.1.2.1.1.7.0
- .1.3.6.1.2.1.1.1.0
- .1.3.6.1.2.1.1.2.0
- .1.3.6.1.2.1.2.2.1.8
- .1.3.6.1.2.1.2.2.1.1
- .1.3.6.1.2.1.4.1.0
- .1.3.6.1.2.1.17.4.3.1.2
- .1.3.6.1.2.1.17.7.1.2.2.1.2
- .1.3.6.1.2.1.17.7.1.4.2.1.3
- .1.3.6.1.2.1.17.1.4.1.2
- .1.3.6.1.2.1.17.2.15.1.8
- .1.3.6.1.2.1.17.2.15.1.3
- .1.3.6.1.2.1.17.2.15.1.9
- .1.3.6.1.2.1.17.1.1.0
- .1.3.6.1.2.1.17.7.1.4.3.1.1
- .1.3.6.1.2.1.17.7.1.4.3.1.2
- .1.3.6.1.2.1.17.7.1.4.3.1.4
- .1.3.6.1.2.1.47.1.1.1.5
- .1.3.6.1.2.1.47.1.3.2.1.2
- .1.3.6.1.2.1.4.21.1
- .1.3.6.1.2.1.4.20.1.1
General MIBs (continued)

.1.3.6.1.6.3.1.1.5.3
.1.3.6.1.6.3.1.1.5.4
.1.3.6.1.6.3.1.1.4.1.0

3COM

3Com SuperStack 3

.1.3.6.1.4.1.43.10.1.14.1.1.1.2
.1.3.6.1.2.1.31.1.2.1.3
.1.3.6.1.4.1.43.10.1.14.1.2.1.2
.1.3.6.1.2.1.17.7.1.4.5.1.1
.1.3.6.1.2.1.17.7.1.4.2.1.4.0
.1.3.6.1.2.1.17.7.1.4.2.1.5.0

3Com 4500

.1.3.6.1.4.1.43.45.1.2.23.1.1.1.1.5
.1.3.6.1.4.1.43.45.1.2.23.1.1.3.1.4
.1.3.6.1.4.1.43.45.1.2.23.1.1.3.1.2
.1.3.6.1.4.1.43.45.1.2.23.1.1.2.1.1.2
.1.3.6.1.4.1.43.45.1.2.23.1.1.2.1.1.3
.1.3.6.1.2.1.17.7.1.4.5.1.1
.1.3.6.1.4.1.43.45.1.2.23.1.3.1.1.3

Alcatel

.1.3.6.1.2.1.17.7.1.4.5.1.1
.1.3.6.1.2.1.17.7.1.4.2.1.5.0

Alcatel 6000

.1.3.6.1.4.1.6486.800.1.2.1.3.1.1.2.1.1.5
.1.3.6.1.4.1.6486.800.1.2.1.3.1.1.2.1.1.5

Apresia

Apresia 2024G

.1.3.6.1.4.1.278.2.8.5.1.3.1.9
.1.3.6.1.4.1.278.2.8.5.2.2.1.2
.1.3.6.1.4.1.278.2.8.5.1.3.1.2
.1.3.6.1.4.1.278.2.8.5.1.3.1.10

Apresia 3124GT, Apresia 4328GT, Apresia 4224GT-PSR

.1.3.6.1.4.1.278.2.27.2.2.2.3
.1.3.6.1.4.1.278.2.27.2.2.2.4
.1.3.6.1.4.1.278.2.27.2.2.2.2
**Avaya (Nortel)**

- .1.3.6.1.4.1.2272.1.3.3.1.7
- .1.3.6.1.4.1.2272.1.3.3.1.4
- .1.3.6.1.4.1.2272.1.3.2.1.11
- .1.3.6.1.4.1.2272.1.3.2.1.2
- .1.3.6.1.4.1.2272.1.4.10.1.1.1
- .1.3.6.1.4.1.2272.1.13.5.1.4
- .1.3.6.1.4.1.2272.1.13.5.1.10
- .1.3.6.1.4.1.2272.1.13.5.1.11
- .1.3.6.1.4.1.2272.1.14.18.1.3
- .1.3.6.1.4.1.2272.1.14.20.1.4

**Avaya (Nortel 1600)**

- .1.3.6.1.4.1.2272.1.3.3.1.13

**Avaya (Nortel Old)**

- .1.3.6.1.4.1.11.2.3.7.11.33.1.2.1.1.2.2.1.6
- .1.3.6.1.4.1.11.2.3.7.11.33.1.2.1.1.2.1.3
- .1.3.6.1.4.1.11.2.3.7.11.33.1.2.1.1.2.1.2

**Brocade/Foundry**

- .1.3.6.1.4.1.1991.1.3.3.1.1.11
- .1.3.6.1.4.1.1991.1.3.2.6.1.3
- .1.3.6.1.4.1.1991.1.3.2.7.1.1
- .1.3.6.1.4.1.1991.1.3.3.1.1.50
- .1.3.6.1.4.1.1991.1.3.3.1.1.38
- .1.3.6.1.2.1.4.35.1.4

**Foundry BigIron RX**

- .1.3.6.1.4.1.1991.1.3.3.5.1.13
- .1.3.6.1.4.1.1991.1.3.2.6.1.1
- .1.3.6.1.4.1.1991.1.3.2.6.1.4

**Foundry EdgeIron 2402**

- .1.3.6.1.2.1.17.7.1.4.5.1.1
Cisco

\[.1.3.6.1.4.1.9.9.402.1.2.1.9\]
\[.1.3.6.1.4.1.9.9.276.1.5.1.1.1\]
\[.1.3.6.1.4.1.9.9.215.1.1.8.1.2\]
\[.1.3.6.1.4.1.9.9.68.1.2.2.1.2\]
\[.1.3.6.1.4.1.9.9.68.1.2.2.1.1\]
\[.1.3.6.1.4.1.9.9.68.1.2.1.1.2\]
\[.1.3.6.1.4.1.9.9.68.1.2.1.1.3\]
\[.1.3.6.1.4.1.9.9.68.1.2.1.1.1\]
\[.1.3.6.1.4.1.9.9.46.1.3.1.1.4\]
\[.1.3.6.1.4.1.9.9.23.1.2.1.1.4\]
\[.1.3.6.1.4.1.9.9.23.1.2.1.1\]
\[.1.3.6.1.4.1.9.5.1.4.1.1.11\]
\[.1.3.6.1.4.1.9.5.1.9.3.1.3\]
\[.1.3.6.1.4.1.9.5.1.9.3.1.7\]
\[.1.3.6.1.4.1.9.5.1.9.3.1.8\]
\[.1.3.6.1.2.1.105.1.1.1.9\]

Comtec

\[1.3.6.1.4.1.35270.533.2.20.2.1.1\]
\[1.3.6.1.4.1.35270.533.2.6.5.1.1\]
\[1.3.6.1.4.1.35270.533.1.3.1.1.11\]
\[1.3.6.1.4.1.35270.533.1.3.1.1.12\]
\[1.3.6.1.4.1.35270.533.2.3.1.1.1\]

D-Link

DGS 3100, DGS 3200

\[.1.3.6.1.2.1.17.7.1.4.5.1.1\]
\[.1.3.6.1.2.1.17.7.1.4.2.1.4.0\]
\[.1.3.6.1.2.1.17.7.1.4.2.1.5.0\]

DGS 1224T

\[.1.3.6.1.4.1.171.10.76.5.13.1.1.3\]
\[.1.3.6.1.4.1.171.10.76.5.13.1.1.4\]
\[.1.3.6.1.4.1.171.10.76.5.13.1.1.2\]

DES 1252

\[.1.3.6.1.4.1.171.10.75.4.13.1.1.3\]
\[.1.3.6.1.4.1.171.10.75.4.13.1.1.4\]
\[.1.3.6.1.4.1.171.10.75.4.13.1.1.2\]

DGS 1248

\[.1.3.6.1.4.1.171.10.76.6.13.1.1.3\]
\[.1.3.6.1.4.1.171.10.76.6.13.1.1.4\]
\[.1.3.6.1.4.1.171.10.76.6.13.1.1.2\]
Dax

.1.3.6.1.2.1.17.7.1.4.5.1.1
.1.3.6.1.4.1.6339.100.5.1.1.2
.1.3.6.1.2.1.17.7.1.4.2.1.4.0
.1.3.6.1.2.1.17.7.1.4.2.1.5.0

Dell

.1.3.6.1.2.1.17.7.1.4.5.1.1
.1.3.6.1.2.1.17.7.1.4.2.1.4.0
.1.3.6.1.2.1.17.7.1.4.2.1.5.0
.1.3.6.1.4.1.674.10895.5000.2.89.48.22.1.1

Dell 6200

.1.3.6.1.4.1.674.10895.5000.2.6132.1.1.1.2.13.1.26

Dell PowerConnect

.1.3.6.1.4.1.89.48.22.1.1

Enterasys

.1.3.6.1.2.1.17.7.1.4.5.1.1
.1.3.6.1.2.1.26.5.1.1.1

Extreme

.1.3.6.1.2.1.17.7.1.4.5.1.1
.1.3.6.1.4.1.1916.1.16.1.1.4
.1.3.6.1.4.1.1916.1.16.1.1.3

ExtremeXOS

.1.3.6.1.4.1.1916.1.2.1.2.1.10
.1.3.6.1.4.1.1916.1.2.1.2.1.2
.1.3.6.1.4.1.1916.1.2.6.1.1.1
.1.3.6.1.4.1.1916.1.2.6.1.1.2
.1.0.8802.1.1.2.1.3.7.1.3

H3C

.1.3.6.1.4.1.2011.2.23.1.2.1.1.1.3
.1.3.6.1.4.1.25506.8.35.1.1.1.5 or .1.3.6.1.4.1.2011.2.23.1.1.1.1.5
.1.3.6.1.4.1.25506.2.9.1.1.2

HP

.1.3.6.1.4.1.11.2.14.11.5.1.9.16.1.1.3
.1.3.6.1.2.1.17.7.1.4.2.1.5.0
.1.3.6.1.2.1.17.7.1.4.5.1.1
.1.3.6.1.2.1.47.1.2.1.1.2.1
HP 4000m

.1.3.6.1.4.1.11.2.14.11.5.1.3.1.1.4.1.5
.1.3.6.1.4.1.11.2.14.11.5.1.3.1.1.8.1.1

Hirschmann

.1.3.6.1.2.1.17.7.1.4.5.1.1
.1.3.6.1.2.1.17.7.1.4.3.1
.1.3.6.1.2.1.17.7.1.4.3.1.3

Linksys

.1.3.6.1.2.1.17.7.1.4.5.1.1
.1.3.6.1.2.1.17.7.1.4.2.1.5.0

NEC

.1.3.6.1.2.1.17.7.1.4.5.1.1
.1.3.6.1.4.1.119.2.3.126.2.23.1.2.1.1.1.3
.1.3.6.1.4.1.119.2.3.126.2.23.1.1.1.1.5
.1.3.6.1.4.1.119.2.3.126.2.23.1.1.3.1.4
.1.3.6.1.4.1.119.2.3.126.2.23.1.1.3.1.2
.1.3.6.1.4.1.119.2.3.126.2.23.1.2.1.1.1.2.1
Appendix 5: Using Network Device Compliance Policies

Determine the compliance of Cisco network devices managed by the Switch Plugin. Use device compliance information to create CounterACT policies that accomplish the following types of proactive enforcement:

- Forbid SNMP Community String *public* settings.
- Require system logging to always be enabled.
- Forbid directed broadcast.
- Forbid SNMP access without ACL
- Forbid remote startup configuration from unwarranted sources.
- Detect accidental configuration errors. For example, prevent DHCP services from being mistakenly enabled or prevent accidental hostname changes.
- Ensure that AAA services are properly configured and enabled, for example, require authenticated login.
How It Works

Several switch properties enable policies to detect and obtain *running config* information that is generated by managed, Cisco network devices that have the *show running-config* command run on them. Use the following switch network device compliance properties to create a variety of compliance policies:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running Config</td>
<td>Detects <em>running config</em> information of switches managed by CounterACT, as generated by the <em>show running-config</em> command.</td>
</tr>
<tr>
<td></td>
<td>The Switch Plugin resolves this property for information at the following instances: (a) After plugin start and initially detecting the switch and (b) Whenever <em>running config</em> information changes (thereby, reduces load on the targeted network devices).</td>
</tr>
<tr>
<td>Running Config Time</td>
<td>Contains the timestamp, MM/YY HH:MM:SS AM/PM, of the plugin's <em>running config</em> information query of the device.</td>
</tr>
<tr>
<td>Interface Table</td>
<td>Detects the specific interface configuration provided in a device <em>running config</em> for the interface. Per interface, the resolved property provides the following information:</td>
</tr>
<tr>
<td></td>
<td>- Interface Name - The interface name and when available the interface location information.</td>
</tr>
<tr>
<td></td>
<td>- Interface Configuration (raw) - the specific, interface configuration, as provided in a device <em>running config</em>.</td>
</tr>
</tbody>
</table>

*Network device compliance properties - Running Config, Running Config Time and Interface Table - are only resolved for a managed switch's Host IP address and not for any of the managed switch's entries having an IP Interface Address (formerly termed in the Console More IPs).*
In addition, detect and compare configuration changes, using the following switch track changes property:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch Running Config Change</td>
<td>Detects running config information changes in the device.</td>
</tr>
</tbody>
</table>

**Prerequisites for Network Device Compliance Property Use**

Perform the following configuration tasks before working with the network device compliance properties:

- Define User with Privileged Permissions
- Configure the Plugin
- Activate the cdm Configuration Flag

**Define User with Privileged Permissions**

Verify that the user defined on the network device has privileged permissions.

**Configure the Plugin**

Verify that the plugin configuration for the switch includes the following:

- The CLI option defined with privileged access.
- The MAC Read/Write method defined with SNMP and CLI permissions.
- The **Connecting Appliance** assigned to the switch contains the switch’s IP address in the Appliance **IP Assignment** range.
This helps ensure consistent compliance validation and saves network utilization. Refer to the CounterACT Console User Manual for information about Appliance **IP Assignment**.

**To define the necessary CLI and MAC Permissions settings, do the following:**

1. In the **CLI** tab, select the **Use CLI** checkbox.
2. In the **Privileged Access Parameters** section of the **CLI** tab, select the **Enable privileged access** checkbox.
3. In the **MAC Permissions** section of the **Permissions** tab, do the following:
   - Select the **Read** checkbox.
   - In the **MAC Read/Write Method** dropdown, select either one of the following options: **SNMP (RW) and CLI** or **SNMP (RO) and CLI**.

### Activate the cdm Configuration Flag

In order to use the network device compliance properties, that is, enable resolution of these policy properties, you must activate the **cdm** advanced configuration flag.

**To activate the cdm flag:**

1. In the **Tools** menu, select **Options**.
2. In the Switch pane, select one or more switches, as relevant.
3. Select **Edit** and then select **Permissions**.
4. Select **Advanced**. The Switch Advanced Settings window opens.
5. In the **Configuration flags** field, enter `cdm: on`.

Stop resolution of the network device compliance properties by deactivating the `cdm` advanced configuration flag.

**To deactivate the cdm flag:**

- In the **Configuration flags** field of the Switch Advanced Settings window, enter `cdm: off`.

**Tuning**

The following tuning options are available when working with the Running Config property:

- [Filter Resolved Running Config Information](#)
- [Adjust the Device Properties Query Rate](#)

**Filter Resolved Running Config Information**

The amount of information provided by the resolved Running Config property can be very extensive. Filter this information by instructing CounterACT to ignore specific information, thereby eliminating information that is not required for the compliance verification, for example, comments or descriptions. Information filtering prevents overloading CounterACT and any third-party systems that CounterACT might share this information with.
In the **Switch Advanced Settings** window, use the configuration flag `running_config_content_filter` to define a filter for use with the information provided by the resolved Running Config property.

**To define the filter configuration flag:**

1. Select **Options** from the **Tools** menu.
2. In the **Switch** pane, select one or more switches, as relevant.
3. Select **Edit** and then select **Permissions**.
4. Select **Advanced**. The **Switch Advanced Settings** window opens.

5. In the **Configuration flags** field, enter the statement:

   ```
   running_config_content_filter:<regular expression>
   ```

   The regular expression contains the filtering criteria to be applied.

   During filter processing, when a line of information is found to match any one of the criteria provided in the regular expression it is eliminated from the resulting information output.
Filter Example

To eliminate any line of information, provided by the resolved `running config` property, that contains either a comment or the word `description`, provide the statement:

```
running_config_content_filter:^!.*|description
```

Adjust the Device Properties Query Rate

By default, the Switch Plugin queries device properties for updates every 10 minutes, regardless of the policy recheck interval. Running Config is an example of a device property. This query rate can be adjusted per device in the Switch Advanced Settings window, using the Read MACs connected to switch port and port properties (MAC address table) value; this field’s default value is 60 seconds.

The device properties query rate is calculated as follows:

**Read MACs connected to switch port and port properties (MAC address table)** value multiplied by 10.

*In addition to being used to calculate the device properties query rate, the Read MACs connected to switch port and port properties (MAC address table) value defines the Read MAC query rate.*

To adjust the device properties query rate for a configured switch device, do the following:

1. In the Console toolbar, select Options.
2. In the navigation pane, select Switch.
3. In the Switch pane, select the relevant switch.
4. Select Edit and then select the Permissions tab.
5. Select Advanced... The Switch Advanced Settings window opens.
6. In the Read MACs connected to switch port and port properties (MAC address table) field, use the up/down arrow keys to modify the value.
7. Select OK > OK > Apply. The Switch Plugin configuration is updated.
Appendix 6: Working with ACL Capabilities

This section presents information about working with the Switch Plugin ACL capability when CounterACT interoperates with the switches of specific switch vendors.

The following topics are covered:

- About ACL Capabilities
- Switch Vendor ACL Support
- What to Do

About ACL Capabilities

Endpoint Address ACLs enable blocking protection before endpoints connect to the network. Other benefits of Endpoint Address ACL blocking include:

- Access limitations on flat networks, when there is no opportunity to assign endpoints to a VLAN.
- Blocking specific endpoints and not all endpoints on a switch port.
- Limiting access to endpoints at their connection point to the network without the need to reassign to VLAN to achieve the same access limitations.
- More robust control of UDP traffic.
- Block endpoints on a backbone switch via the trunk connection, when the endpoint connected to the switch does not support ACL or is connected to an unmanaged switch.

The following types of Endpoint Address ACL blocking are available:

- Close or open network zones, services or protocols on specific endpoint IP addresses or groups of them directly at the switch. See Endpoint Address ACL: IP Address Blocking Capability for details.
- Block traffic from an endpoint to a switch based on the endpoints MAC address. See Endpoint Address ACL: MAC Address Blocking Capability for details.

Handle scenarios that address broader access control. See Access Port ACL Capability for details.

Access Port ACL Capability

Access Port ACL is a network operator defined ACL, addressing one or more than one access control scenario, which is applied to an endpoint’s switch access port. These access control scenarios are typically role or classification driven, for example, registered guest or compliance, and not endpoint IP specific. This differs from Endpoint Address ACL blocking, where CounterACT limits the rules of the ACL – only allowing the adding/removing of endpoint addresses to the ACL’s permit/deny rules. The plugin does not inspect or change the ACL configuration, but acts as a delivery vehicle to provision a network switch.
With Access Port ACLs, a network operator has total control over the ACL configuration and can take advantage of the full set of switch capabilities, regardless of endpoint IP address status (has IP, does not have IP, has multiple assigned IPs, has multiple assigned IPs that change with time). For example, define an ACL configuration that denies corporate network access to guests but permits Internet access, regardless of endpoint IP address (no IP address dependency).

Access Port ACLs are applied to switch access ports, which can be any of the following IP interfaces:
- A switch port
- A switch port assigned to a single VLAN
- A switch port assigned to a single VLAN and a VoIP VLAN

An Access Port ACL is not intended for application on ports serving multiple endpoints; specifically, trunk ports and uplink ports are not supported.

**Use Cases**
- A network operator seeking basic, access control with minimal impact to end users and network infrastructure. Needs to enforce network restrictions for corporate endpoints and guest endpoints and quarantine other endpoints without changing VLAN assignments or requiring pre-registration of IP/ MAC configuration.
- For a high security deployment that either does not use RADIUS or handles endpoints that cannot perform 802.1X authentication (avoid extended delays of MAB timeouts). Needs to restrict network access until a successful authentication/compliance inspection completes.
- Network operator using vendor specific APIs, for example, ACL restriction rules (conditions), traffic shaping (QoS) and logging.

**Reduced Switch Processing Load**
Use of Access Port ACL reduces switch processing load. Because ACL content is not IP address dependent, each application to a switch access port:
- Does not require the switch to re-compile its entire ACL configuration
- Does not suspend switch ACL treatment for the applied/associated ports, while the ACL configuration is re-evaluated for packet filtering rules

See **What to Do** for information about configuration required when working with Access Port ACLs.

**Endpoint Address ACL: IP Address Blocking Capability**
Use IP ACL rules that instruct a switch to execute any of the following:
- Block all traffic from network address(es) to targeted port(s)/service(s) in detected endpoint(s), based on endpoint IP addresses.
- Block all traffic from detected endpoint(s), based on endpoint IP addresses, to targeted port(s)/service(s) in network address(es).
- Allow blocking exceptions

For switches that support IP ACL blocking, use the **Endpoint Address ACL** action to define the ACL rules. The rules will apply to all endpoints on the switch detected
as a result of your policy. When incorporating the action into a policy you can apply different rules to different network segments.

If a switch does not support either ACL TCP flags or ACL rule numbering (ACL rule sequence numbers), you can still have the Switch Plugin instruct the switch to block endpoint traffic:

1. In the **ACL** page:
   - Select the option **Enable basic ACL on action failure**.
   - Define ACL rules in the **Specify Basic ACL Rules** pane.
   - For switch non-support of ACL rule numbering, select the option **Use basic ACL settings on action failure**.

2. In the **Endpoint Address ACL** action, select the option **Use Basic ACL on action failure**.

See [What to Do](#) for information about configuration required when working with IP address ACL blocking.

### Endpoint Address ACL: MAC Address Blocking Capability

Use MAC ACL rules to instruct a switch to block detected endpoints based on their MAC address. All traffic from the endpoint to the switch is blocked. This is useful, for example, when you want to control traffic at Layer 2 and the switch cannot be configured to block IP addresses. For switches that support MAC ACL blocking, use the **Endpoint Address ACL** action to apply blocking based on MAC address.

See [What to Do](#) for information about configuration required when working with MAC address ACL blocking.

### Identifying Supported ACL Blocking

The Configuration Test results identify what kind of ACL blocking is supported by the switch.

<table>
<thead>
<tr>
<th>Switch</th>
<th>Time</th>
<th>Type</th>
<th>Status</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>19:33:1.02</td>
<td>6/24/20-10:47 PM</td>
<td>Read Permission</td>
<td>Passed</td>
<td></td>
</tr>
<tr>
<td>19:33:1.02</td>
<td>6/24/20-10:47 PM</td>
<td>Number of MAC Addresses Found</td>
<td>Passed</td>
<td>(Via Command Line)</td>
</tr>
<tr>
<td>19:33:1.02</td>
<td>6/24/20-10:31 PM</td>
<td>Assign to VLAN</td>
<td>Passed</td>
<td></td>
</tr>
<tr>
<td>19:33:1.02</td>
<td>6/24/20-10:31 PM</td>
<td>Query ARP</td>
<td>Passed</td>
<td>(Via Command Line)</td>
</tr>
<tr>
<td>19:33:1.02</td>
<td>6/24/20-10:42 PM</td>
<td>ACL</td>
<td>Passed</td>
<td>Only BASIC ACL is supported (TCP flags are not supporting)</td>
</tr>
<tr>
<td>19:33:1.02</td>
<td>6/24/20-10:42 PM</td>
<td>Refresh ARP</td>
<td>Passed</td>
<td></td>
</tr>
<tr>
<td>19:33:1.02</td>
<td>6/24/20-10:42 PM</td>
<td>Auto Diconnect</td>
<td>Passed</td>
<td></td>
</tr>
<tr>
<td>19:33:1.02</td>
<td>6/24/20-10:42 PM</td>
<td>Switch Block</td>
<td>Passed</td>
<td></td>
</tr>
<tr>
<td>19:33:1.02</td>
<td>6/24/20-10:42 PM</td>
<td>Connectivity</td>
<td>Passed</td>
<td></td>
</tr>
</tbody>
</table>

See [Test Failure Scenarios](#) for details.
Switch Vendor ACL Support

The following tables define the ACL capabilities that are available to use with the Switch Plugin for supported, vendor switches:

- Brocade/Foundry Switches (except for IronWare switches)
- Brocade/Foundry IronWare Switches
- Cisco Switches (except for Catalyst 2950 switches and Small Business 300 Series switches)
- Cisco Small Business 300 Series Switches
- Cisco Catalyst 2950 Switches – Standard Image Software
- Cisco Catalyst 2950 Switches – Enhanced Image Software
- Enterasys Switches
- Juniper Switches

### Brocade/Foundry Switches (except for IronWare switches)

<table>
<thead>
<tr>
<th>Endpoint Address ACL</th>
<th>Access Port ACL</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Based on IP Address</td>
<td>Based on MAC Address</td>
<td>Supported</td>
</tr>
</tbody>
</table>

### Brocade/Foundry IronWare Switches

<table>
<thead>
<tr>
<th>Endpoint Address ACL</th>
<th>Access Port ACL</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use Basic ACL on action failure option supported, ACL rule numbering not supported</td>
<td>Supported</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endpoint Address ACL</td>
<td>Access Port ACL</td>
<td>Comments</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>Based on IP Address</td>
<td>Based on MAC Address</td>
<td></td>
</tr>
</tbody>
</table>

\*Cisco Switches (except for Catalyst 2950 switches and Small Business 300 Series switches)\*

<table>
<thead>
<tr>
<th>Endpoint Address ACL</th>
<th>Access Port ACL</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
</tbody>
</table>

**Cisco Small Business 300 Series Switches**

<table>
<thead>
<tr>
<th>Endpoint Address ACL</th>
<th>Access Port ACL</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
</tbody>
</table>

**Cisco Catalyst 2950 Switches – Standard Image Software**

<table>
<thead>
<tr>
<th>Endpoint Address ACL</th>
<th>Access Port ACL</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not supported</td>
<td>Not supported</td>
<td>Supported</td>
</tr>
</tbody>
</table>

ACL support is available for Cisco Catalyst 2950x switches that are limited to Standard Image (SI) support, including:

- Catalyst 2950-12 Standard Image (SI)
- Catalyst 2950-24 Standard Image (SI)
- Catalyst 2950SX-24 Standard Image (SI)
Cisco Catalyst 2950 Switches – Enhanced Image Software

<table>
<thead>
<tr>
<th>Endpoint Address ACL</th>
<th>Access Port ACL</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Based on IP Address</td>
<td>Based on MAC Address</td>
<td></td>
</tr>
<tr>
<td>Use Basic ACL on action failure option supported.</td>
<td>Supported</td>
<td>Supported</td>
</tr>
</tbody>
</table>

ACL support is available for Cisco 2950x switches that support the installation of Enhanced Image (EI). These include:

- Catalyst 2950T-24 Enhanced Image (EI)
- Catalyst 2950C-24 Enhanced Image (EI)
- Catalyst 2950G-12-EI Enhanced Image (EI)
- Catalyst 2950G-24-EI Enhanced Image (EI)
- Catalyst 2950G-24-EI-DC Enhanced Image (EI)
- Catalyst 2950G-48-EI Enhanced Image (EI)

Enterasys Switches

<table>
<thead>
<tr>
<th>Endpoint Address ACL</th>
<th>Access Port ACL</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Based on IP Address</td>
<td>Based on MAC Address</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Supported</td>
<td>Not supported</td>
</tr>
</tbody>
</table>

Juniper Switches

<table>
<thead>
<tr>
<th>Endpoint Address ACL</th>
<th>Access Port ACL</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Based on IP Address</td>
<td>Based on MAC Address</td>
<td></td>
</tr>
<tr>
<td>Supported</td>
<td>Supported</td>
<td>Not supported</td>
</tr>
</tbody>
</table>

What to Do

In order to use the Switch Plugin ACL capabilities with a supporting switch, the following must be performed:

- Using either the Add Switch wizard or the Edit Switch window, configure the Write – Enable Actions for MAC permissions. See MAC Permissions.
- Using either the Add Switch wizard or the Edit Switch window, configure ACL capabilities per switch being configured to interoperate with the Switch Plugin. See ACL Configuration – Cisco and Brocade/Foundry Switches, ACL Configuration – Enterasys Matrix N-Series Switches or ACL Configuration – Juniper Switches.
• Using either the Add Switch wizard or the Edit Switch window, configure the advanced configuration flag `acl_action_type` with the appropriate ACL action type for either Access Port ACL or Endpoint Address ACL. See Advanced configuration flags.

• Define the required action in policies – either Access Port ACL action or Endpoint Address ACL actions (IP address-based ACL or MAC address-based ACL). See Restrict Actions.

• Setup your switches to work with the Switch Plugin and the ACL capability. See Configuring Switches for ACL Integration.
Appendix 7: Improve Switch Management for Large Deployments

This section discusses implementing a multi-process plugin architecture; such an architecture significantly increases the real-time, switch management capacity of CounterACT. This approach is useful in very large networks with many L2/L3 switches.

The following topics are covered:
- Multi-Process Switch Plugin Architecture
- Deploy Plugin Multi-Process Operation
- Determining the Number of Sub-Processes to Run
- Administer Plugin Multi-Process Operation per Appliance

Multi-Process Switch Plugin Architecture

When the Switch Plugin operates in multi-process mode, it initiates and sustains several simultaneous processes - one parent process and a variable number of switch management child processes. The parent process communicates between parallel switch management child processes and the CounterACT infrastructure. This architecture allows numerous, concurrent switch management sessions to run, multiplying the capacity of the Switch Plugin as compared with single-process versions of the Switch Plugin.

CounterACT Appliances having their Switch Plugin operate in multi-process mode must be running version 7.0.0, Hotfix 1.5.2 or above.

Number of Sub-Processes to Run

When operating in multi-process mode, the Switch Plugin determines the number of sub-processes to run on each Appliance based on its consideration of the following factors:

- The number of active switch devices that the Appliance manages (active switch devices do not have any of the following statuses: disabled, newly discovered or not a switch)
- The CounterACT-established maximum number of switch devices that any single sub-process should manage
- The number of Appliance CPUs
- The amount of Appliance RAM
Deploy Plugin Multi-Process Operation

In order to deploy Switch Plugin multi-process operation in CounterACT Appliances, you must perform the following administrative tasks:

- Engineer Appliance Management Processing Load
- Enable Hyper-thread Mode in the Appliance BIOS
- Enable Multi-Process Operation for the Plugin

Engineer Appliance Management Processing Load

Deploying Switch Plugin multi-process operation in your CounterACT Appliances requires you to be aware of the management processing load that will be required of these Appliances and, if necessary, adjust that processing load among Appliances.

- Appliance Processing Capacity: Managing Both Switches and Endpoints
- Appliance Processing Capacity: Managing Only Switches

Appliance Processing Capacity: Managing Both Switches and Endpoints

This section describes the recommended maximum number of switches that an Appliance can manage. This information is provided based on the following assumptions:

- An Appliance manages the complete number of endpoints for which it is licensed. For example, the CT-4000 Appliance manages 4,000 endpoints.
- On average, 50 endpoints connect to a switch.

Use the information presented in the table below as a guide when planning for the use of Switch Plugin multi-process operation in CounterACT Appliances. There is a trade-off between the managed endpoint capacity of a CounterACT Appliance and its managed switch device capacity; lowering the number of endpoints being managed, raises the number of switch devices that can be managed.

<table>
<thead>
<tr>
<th>CounterACT Appliance Model</th>
<th>Number of Managed Endpoints</th>
<th>Recommended Maximum Number of Managed Switches</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCT/CT-R</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>VCT/CT-100</td>
<td>500</td>
<td>10</td>
</tr>
<tr>
<td>VCT/CT-1000</td>
<td>1,000</td>
<td>20</td>
</tr>
<tr>
<td>VCT/CT-2000</td>
<td>2,500</td>
<td>50</td>
</tr>
<tr>
<td>VCT/CT-4000</td>
<td>4,000</td>
<td>80</td>
</tr>
<tr>
<td>VCT/CT-10000</td>
<td>10,000</td>
<td>200</td>
</tr>
</tbody>
</table>

For any specific CounterACT deployment, Appliance capacity to manage switches can vary depending on multiple factors. For example, the actual number of ports per switch, the complexity of the policies being run or the rates used by the plugin to poll managed switches.
Appliance Processing Capacity: Managing Only Switches

When an Appliance does not manage any endpoints, but instead, only manages switch devices, the maximum number of switch devices the Appliance can manage is presented in the following table:

<table>
<thead>
<tr>
<th>CounterACT Appliance Model</th>
<th>Maximum Number of Managed Switches (Appliance manages only switch devices)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCT/CT-R</td>
<td>5</td>
</tr>
<tr>
<td>VCT/CT-100</td>
<td>25</td>
</tr>
<tr>
<td>VCT/CT-1000</td>
<td>300</td>
</tr>
<tr>
<td>VCT/CT-2000</td>
<td>500</td>
</tr>
<tr>
<td>VCT/CT-4000</td>
<td>1,000</td>
</tr>
<tr>
<td>VCT/CT-10000</td>
<td>1,500</td>
</tr>
</tbody>
</table>

Enable Hyper-thread Mode in the Appliance BIOS

Hyper-Threading Technology allows a physical processor to behave like multiple logical processors. With Switch Plugin multi-process operation, it is recommended that hyper-threading is enabled on your CounterACT hardware. For CounterACT Appliances with hardware revision 22 or below, Hyper-Threading Technology is not enabled by default and requires manual configuration to enable it.

On an Appliance, run either of the following `fstool` commands to obtain Appliance hardware revision information:

- `fstool model` - outputs only the Appliance model and hardware revision
- `fstool sysinfo` - outputs extensive system information about the Appliance, including a line entry containing the Appliance model and hardware revision

Appliance hardware revision information is also provided on a label that is located on the Appliance top. In the following label example, the hardware revision information is underlined:
To enable hyper-threading on an Appliance:

1. Reboot the Appliance. In the initial POST screen, press the key specified to access the BIOS. Typically this is <Delete> or <F2>.

2. Locate and enable the Hyper-Threading option in the system BIOS configuration screens. This location can vary based on the type of motherboard or BIOS build. Some vendors may use other names for this option, such as Logical Processors.

3. Save changes and exit the BIOS configuration screens.

4. Allow the Appliance to reboot.

Enable Multi-Process Operation for the Plugin

By default, the Switch Plugin operates in multi-process mode on all Appliances. In the Edit general parameters window, multi-process operation on all Appliances is enabled by default.

To disable multi-process operation on all Appliances and make the Switch Plugin run in standard, single-process mode on all Appliances, see Global Configuration Options for the Switch Plugin.
Determining the Number of Sub-Processes to Run

The Switch Plugin enhanced method for determining the number of sub-processes to run takes into consideration the following factors:

- The number of active switch devices that the Appliance manages (active switch devices do not have any of the following statuses: disabled, newly discovered or not a switch)
- The CounterACT-established maximum number of switch devices that any single sub-process should manage
- The number of Appliance CPUs
- The amount of Appliance RAM

In earlier versions of the Switch Plugin, the number of sub-processes put into operation by the plugin was determined using either of the following methods:

- A specific number of sub-processes property was defined in the `local.properties` file.
- A ratio property was defined in the `local.properties` file, which was then multiplied by the number of Appliance CPUs. The resulting product was used.

Neither of these existing methods takes into consideration the number of switches being managed by the Appliance.

Plugin Multi-Process Operation Post-Upgrade

This section describes the multi-process operation method in effect for the Switch Plugin after upgrading to the current version.

- Multi-Process Operation Unavailable in Previous Plugin Version
- Multi-Process Operation Available in Previous Plugin Version

Multi-Process Operation Unavailable in Previous Plugin Version

In any version prior to 8.7.0, Switch Plugin multi-process operation was not available for use. Upgrading from a version prior to 8.7.0 to the current version enables plugin multi-process operation using the enhanced method for determining the number of multi-processes to run.

Multi-Process Operation Available in Previous Plugin Version

In all versions 8.7.0 and above, Switch Plugin multi-process operation was available for use. Upgrading from any version 8.7.0 or above to the current version maintains the existing plugin multi-process operation (enabled/disabled and the associated property values). It is recommended that your Switch Plugin use the enhanced method for determining the number of sub-processes to run, provided in the current version.

To use the enhanced method on all Appliances:

1. From the Console, stop the Switch Plugin on all CounterACT devices (the Enterprise Manager and all Appliances).

   (Select Options > Plugins > Switch Plugin > click Stop > in the Select Appliances window, select all CounterACT devices. Once plugin processing completes, the Switch Plugin status is Not running.)
2. On the Enterprise Manager, run the following commands using an SSH connection:
   a. `fstop oneach -c fstop sw remove_property config.fssubproc_count.value`
   b. `fstop oneach -c fstop sw remove_property config.fssubproc_cpuratio.value`
   c. `fstop oneach -c fstop sw remove_property config.fssubproc_manual_mode.value`

3. From the Console, start the Switch Plugin on all CounterACT devices.
   (Select **Options** > **Plugins** > Switch Plugin > click **Start** > in the Select Appliances window, select all CounterACT devices. Once plugin processing completes, the Switch Plugin status initially displays as **Initializing** and then must update to **Running**.)

**Administer Plugin Multi-Process Operation per Appliance**

Administer multi-process operation of the Switch Plugin per specific Appliances, using `fstop1` commands. The following administrative capabilities are available:

- Disable Multi-Process Operation of the Switch Plugin for an Appliance
- Force Appliance Use of the Switch Plugin Configured Settings

**Disable Multi-Process Operation of the Switch Plugin for an Appliance**

If **Enable multi-process mode** option is **selected** in the **Edit general parameters** window of the Switch Plugin, then multi-process operation of the Switch Plugin is enabled on all Appliances.

To disable multi-process operation of the Switch Plugin for a specific Appliance, run the following commands on that Appliance:

1. `fstop sw set_property config.fssubproc_manual_mode.value true`
2. `fstop sw set_property config.fssubproc_count.value 1`
3. `fstop sw restart`

**Force Appliance Use of the Switch Plugin Configured Settings**

Should you want to force an Appliance to return to operate according to the Switch Plugin settings as configured in the Console - in this specific case, operate per configured **Enable multi-process mode** option in the **Edit general parameters** window of the Switch Plugin - then perform the following procedure:

To force a specific Appliance to return to operate according to the configured Switch Plugin settings:

1. `fstop sw remove_property config.fssubproc_manual_mode.value`
2. `fstop sw restart`
Additional CounterACT Documentation

For more detailed information about the CounterACT features described here or additional CounterACT features and modules, refer to the following resources:

- Documentation Portal
- Customer Support Portal
- CounterACT Console Online Help Tools

Documentation Portal

The ForeScout Documentation Portal is a Web-based library containing information about CounterACT tools, features and functionality and integrations.

To access the Documentation Portal:

4. Use your customer support credentials to log in.
5. Select the CounterACT version you want to discover.

Customer Support Portal

The Customer Support Portal provides links to CounterACT version releases, service packs, plugins and modules as well as related documentation. The portal also provides a variety of How-to Guides, Installation Guides and more.

To access the Customer Support Portal:

7. Select the CounterACT version you want to discover.

CounterACT Console Online Help Tools

Access information directly from the CounterACT Console.

Console Help Buttons

Use context sensitive Help buttons to quickly access information about the tasks and topics you are working with.
**Console User Manual**
Select **CounterACT Help** from the **Help** menu.

**Plugin Help files**
8. After the plugin is installed, select **Options** from the **Tools** menu and then select **Plugins**.
9. Select the plugin and then select **Help**.

**Documentation Portal**
Select **Documentation Portal** from the **Help** menu.
Legal Notice

Copyright © ForeScout Technologies, Inc. 2000-2017. All rights reserved. The copyright and proprietary rights in this document belong to ForeScout Technologies, Inc. ("ForeScout"). It is strictly forbidden to copy, duplicate, sell, lend or otherwise use this document in any way, shape or form without the prior written consent of ForeScout. All other trademarks used in this document are the property of their respective owners.

These products are based on software developed by ForeScout. The products described in this document may be protected by one or more of the following U.S. patents: #6,363,489, #8,254,286, #8,590,004, #8,639,800 and #9,027,079 and may be protected by other U.S. patents and foreign patents.

Redistribution and use in source and binary forms are permitted, provided that the above copyright notice and this paragraph are duplicated in all such forms and that any documentation, advertising materials and other materials related to such distribution and use acknowledge that the software was developed by ForeScout.

Unless there is a valid written agreement signed by you and ForeScout that governs the below ForeScout products and services:

- If you have purchased any ForeScout products, your use of such products is subject to your acceptance of the terms set forth at http://www.forescout.com/eula/;
- If you have purchased any ForeScout support service ("ActiveCare"), your use of ActiveCare is subject to your acceptance of the terms set forth at http://www.forescout.com/activecare-maintenance-and-support-policy/;
- If you have purchased any ForeScout Professional Services, the provision of such services is subject to your acceptance of the terms set forth at http://www.forescout.com/professional-services-agreement/;
- If you are evaluating ForeScout’s products, your evaluation is subject to your acceptance of the applicable terms set forth below:
  - If you have requested a General Availability Product, the terms applicable to your use of such product are set forth at: http://www.forescout.com/evaluation-license/.
  - If you have requested a Beta Product, the terms applicable to your use of such product are set forth at: http://www.forescout.com/beta-test-agreement/.
  - If you have purchased any ForeScout Not For Resale licenses, such license is subject to your acceptance of the terms set forth at http://www.forescout.com/nfr-license/.

Send comments and questions about this document to: documentation@forescout.com

2017-03-01 16:23