About CounterACT Resiliency Solutions

Customer Support Portal ... 56
CounterACT Console Online Help Tools ... 57
About CounterACT Resiliency Solutions

ForeScout CounterACT resiliency solutions provide support for availability of CounterACT services to minimize down-time in cases of system failure.

Resiliency Solutions for Appliances

The following resiliency solutions are available for CounterACT Appliances:

- **Failover Clustering**
 - Implemented with clusters of Appliances.
 - Redundancy is achieved by defining clusters of Appliances that can automatically take over discovery, assessment and control in case of single or multiple Appliance failure within the cluster/s.
 - Workload is balanced among the Appliances in the cluster/s after failover.

- **High Availability Pairing**
 - Implemented in pairs of two Appliances.
 - Redundancy is achieved by assigning an Active node and a Standby node. The Standby node automatically takes over discovery, assessment and control in case the Active node fails.
 - The two nodes are synchronized by a redundant pair of directly interconnecting cables.

For a comparison of the above solutions, and to learn more about which solution is appropriate for your deployment, see [Comparison of Resiliency Solutions for Appliances](#).

Resiliency Solutions for the Enterprise Manager

The following resiliency solutions are available for the Enterprise Manager:

- **High Availability Pairing**
 - Implemented in pairs of two Enterprise Managers.
 - Redundancy is achieved by assigning an Active node and a Standby node. The Standby node automatically takes over discovery, assessment and control in case the Active node fails.
 - The two nodes are synchronized by a redundant pair of directly interconnecting cables.

- **Disaster Recovery for Enterprise Manager**
 - Implemented in pairs of two Enterprise Managers.
 - Redundancy is achieved by defining a Recovery Enterprise Manager that is manually triggered to take over from an Enterprise Manager that is no longer functioning as a result of, for example, a disaster.
 - The Enterprise Manager and the Recovery Enterprise Manager are synchronized by communication performed on port 13000/TCP.

> The Failover Clustering solution does not support Enterprise Manager failure scenarios.

See the [Glossary](#) for descriptions of terms related to CounterACT resiliency solutions.
Comparison of Resiliency Solutions for Appliances

The table below compares the High Availability Pairing and Failover Clustering solutions.

<table>
<thead>
<tr>
<th></th>
<th>High Availability Pairing</th>
<th>Failover Clustering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node configuration model</td>
<td>Active/standby</td>
<td>All Appliances are active</td>
</tr>
<tr>
<td>Failover triggers CounterACT service restart</td>
<td>Yes. Affects overall failover time (until Standby becomes Active)</td>
<td>No</td>
</tr>
<tr>
<td>Total failover time</td>
<td>From a few to over ten minutes (due to CounterACT service start).</td>
<td>Configured Failover Detection Time (default and minimum of 3 minutes) plus up to 30 additional seconds.</td>
</tr>
<tr>
<td>Allows distribution across geographic locations</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Network requirements</td>
<td>Requires redundant pair of interconnecting cables to sync the 2 Appliances.</td>
<td>Yes. See Requirements</td>
</tr>
<tr>
<td>Requires dedicated setup and configuration during Appliance installation</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Requires available capacity from active Appliance/s</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Allows using a combination of physical and virtual Appliances</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Allows using Appliances with different models</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Support for all endpoint types and connection/integration methods</td>
<td>Yes</td>
<td>No. See Features Not Currently Supported</td>
</tr>
<tr>
<td>Failover detection mechanism</td>
<td>Active and Standby nodes send heartbeats to one another.</td>
<td>Enterprise Manager cannot reach the Appliance through port 13000.</td>
</tr>
</tbody>
</table>
Choosing the Right Solution for Your Deployment

The table below describes when to use each solution for a Standalone or group of Appliances within your deployment (See Deployment Types), based on the details of your deployment and/or business needs. You can also use both solutions in parallel.

<table>
<thead>
<tr>
<th>Deployment Type</th>
<th>CounterACT Device Setup</th>
<th>High Availability Pairing</th>
<th>Failover Clustering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centralized Deployment</td>
<td>Some or all Appliances are at the same location, or Appliances have networking access to each other and to the endpoints they handle.</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Hybrid Deployment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distributed Deployment</td>
<td>Appliance at a remote site with no access to other parts of the network that it is not handling.</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>Distributed Deployment</td>
<td>Appliance at a remote site with no access to other parts of the network that it is not handling.</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>Centralized Deployment</td>
<td>Appliance at a remote site with no access to other parts of the network that it is not handling.</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>Hybrid Deployment</td>
<td>Appliance at a remote site with no access to other parts of the network that it is not handling.</td>
<td>✓</td>
<td>✗</td>
</tr>
</tbody>
</table>
| **Distributed Deployment** | Appliances that need to be configured on a 3rd party server. For example:
- Appliances that receive SNMP traps from switches and controllers
- Appliances that monitor a network SPAN port to see network traffic
Note: If your deployment uses a load balancer to distribute traffic across Appliances, the Failover Clustering solution can be used. | ✓ | ✗ |
| **Centralized Deployment** | Appliances where plugins or features are configured individually per Appliance instead of globally for all Appliances. | ✓ | ✗ |
| **Hybrid Deployment** | Appliances where plugins or features are configured individually per Appliance instead of globally for all Appliances. | ✓ | ✗ |

Notes:
- Unless your deployment uses a load balancer to distribute traffic across Appliances.
Deployment Types

CounterACT can be deployed in a number of different ways depending on your environment and specific business needs. The diagrams in the following sections show several common deployment types.

Distributed Deployment

In a distributed deployment, all sites have CounterACT Appliances deployed locally. All CounterACT Appliances report to the Enterprise Manager in the Data Center.

Centralized Deployment

In a centralized deployment, CounterACT Appliances are deployed in the Data Center and managed by an Enterprise Manager. These Appliances provide visibility and control over devices and users across all your sites.
Hybrid Deployment

In a hybrid deployment, larger sites have CounterACT Appliances deployed locally, while some of the smaller sites are managed directly from the Data Center. All CounterACT Appliances report to the Enterprise Manager in the Data Center.

Failover Clustering

CounterACT deployments (e.g. centralized or hybrid) require resiliency within and across sites and geographic locations. Each site (e.g. data center) can contain many Appliances. **Failover Clustering** provides a resiliency solution in the event that an Appliance, a number of Appliances or an entire site fails. This means that the workload handled by the failed Appliance/s will automatically be transferred to other functioning Appliances with free capacity.

Failover Clustering enhances reliability by ensuring that you can:

- Withstand either single or multiple points of failure in the event of resource failure, for example, in case of a power outage.
- Maintain CounterACT service continuity with no need for manual intervention.

The Failover Clustering solution offers a deployment architecture that uses fewer idle standby resources, resulting in reduced cost, complexity and power consumption. Additionally, in the event of an Appliance failure, CounterACT balances the workload among Appliances so as to avoid overloading the recipient Appliances.

What to Do

To work with Failover Clustering, perform the following:

- Verify that you have met requirements. See [Requirements](#).
- Understand how failover works. See [About Failover and Failback](#).
Failover Clustering

- Enable viewing and using the feature in the Console. See Begin Working with Failover Clustering.
- Define clusters of logically connected or geographically close Appliances that will provide failover support to other Appliances. See Configuring Failover.

In addition, you can also perform the following to better understand and work with failover clusters:

- Understand how Appliance failover assignments are distributed upon failover. See Distribution of Workload upon Failover.
- Identify Appliance capacity and understand what happens to endpoints that exceed this capacity. See Handling Endpoints that Exceed Capacity.
- View endpoint, switch device, WLAN device and Appliance information related to failover. See Viewing Failover Information in the Console.
- Track failover activity in the Audit Trail or Event Viewer. See Tracking Failover Activity.

Requirements

Verify that the following software and network requirements are met and that Console users have the necessary permissions.

- CounterACT Software Requirements
- Network Deployment Requirements
- Console User Permissions

CounterACT Software Requirements

- Failover Clustering license. Requires installation of Failover Clustering Module, version 1.0.0. See Begin Working with Failover Clustering.
- Service Pack 3.0.0 or above
- Switch Plugin, version 8.11.0 or above
- Wireless Plugin, version 1.7.0 or above
- If you are working with Windows, Linux or macOS/OS X endpoints, install the following plugins, respectively:
 - HPS Inspection Engine, version 10.7.0 or above. If you are upgrading to this release from a version lower than 10.6.0, you must install the DNS Client Plugin, version 3.0.0.
 - Linux Plugin, version 1.0.0 or above
 - OS X Plugin, version 2.0.0 or above
- All Appliances participating in failover must have uniform configuration settings applied. Plugins or features cannot be configured individually per Appliance. See Choosing the Right Solution for Your Deployment for more information.
Network Deployment Requirements

- A network infrastructure that enables rerouting or load balancing traffic (e.g. SPAN, SNMP traps from network devices) so that potential recipient Appliances can see and handle endpoints and network devices, in case of an Appliance or site failure.

- This feature can be enabled on Appliances that are connected to the same Enterprise Manager, but **not** on the following CounterACT devices:
 - A single, standalone Appliance that is not connected to an Enterprise Manager.
 - An Enterprise Manager.

- Appliances that can potentially manage network devices as a result of a failover must have network access to those switches.

- Make sure that all Active Directory services can be accessed by all Appliances in the Failover Cluster:
 - If the DNS Detection checkbox is selected for Appliances in the Failover Cluster, this happens automatically. This checkbox is configured when defining User Directory servers in the User Directory Plugin.
 - Otherwise, make sure that this is configured manually by adding the relevant server IP addresses in the User Directory Plugin.

Refer to the *CounterACT User Directory Plugin Configuration Guide* for more information.

Console User Permissions

In order to use and configure Failover Clustering in the Console, users must have *Update* access to the following Console permissions:

- CounterACT Appliance Control
- Multiple CounterACT Appliance Management

To access Permission and Scope options:

1. Select **Options** from the Tools menu and then select **Console User Profiles**.
2. Select **Add** to create a new user/group or **Edit** to change an existing one.
3. In the **Permissions** section, select the relevant permissions listed above.

Refer to the section on permission and scope options in the *CounterACT Console User Manual* for more information. See *Additional CounterACT Documentation*.

About Failover and Failback

Failover occurs after an Appliance fails, and the range of endpoints and network devices handled by the Appliance is distributed to one or more recipient Appliances for continued handling. A recipient Appliance is a functioning Appliance managed by the same Enterprise Manager as the failed Appliance. The range of transferred endpoints and network devices is the *Failover Assignment*, which will now be handled
by the recipient Appliance in addition to the *Original Assignment*, which is the range of endpoints and network devices originally configured for the recipient Appliance.

CounterACT considers an Appliance failed when attempts by the Enterprise Manager to connect to it through port 13000 result in connection time outs for a defined period of time. This means that the Enterprise Manager cannot connect to the Appliance at the operating system level for this period of time. This may occur for a variety of reasons, for example, if the Appliance is unplugged or in the event of a natural disaster. See [Configure Failover Cluster Settings](#) for more information about the failover detection time period.

If the CounterACT *service* is down on the Appliance, for example, during a service pack upgrade, the Appliance is *not* considered failed and failover will not occur, even if the service is down for longer than the detection time period.

Endpoints and devices generally fail over to recipient Appliances immediately after the detection time has passed. The total failover time (failover detection time + time to failover to recipient Appliances) may depend on several additional factors, including the performance capabilities of the Appliances participating in failover.

Failback

Failback occurs after a failed Appliance reconnects to the Enterprise Manager, and regains control of the endpoints and network devices previously distributed to recipient Appliances.

If a switch device is transferred to a recipient Appliance due to failover, and then the recipient Appliance auto-discovers additional switches, only the original switch devices will be transferred back to the original Appliance after failback. The auto-discovered switch devices will remain handled by the recipient Appliance.

Continuity of Endpoint, Switch and Wireless Device Visibility, Information and Enforcement

When transferred to a recipient Appliance, endpoints (both wired and wireless) and switch and wireless devices continue to be visible in the Console and most previously discovered data is preserved. Properties resolved on endpoints, and actions previously performed on endpoints by the original Appliance are transferred with the endpoints and will continue to apply.

In addition, endpoints are rechecked for policy evaluation after being transferred to the recipient Appliance. This ensures that endpoint information is preserved and that enforcement continues functioning as in a regular, non-failover scenario.

Data transferred with the endpoint includes:

- Matched policies and sub-rules
- Manual continuous actions applied on the endpoint and information relevant to them
- Events and properties that cannot be relearned and are used in policies

The Authentication, Signed In Status property is not transferred.
There might be occurrences in which an applied, switch restrict action is temporarily cancelled by the Switch Plugin. However, as soon as CounterACT re-discovers and re-evaluates the affected endpoints, the Switch Plugin re-applies the action that was in effect on the endpoints, as necessary.

Switch Plugin Auto-Discovery

During a failover scenario, the Switch Plugin auto-discovery feature is affected as follows:

- **Managed Switch Failover to a Recipient Appliance.** All neighboring switch devices that the Switch Plugin, on the recipient Appliance, learns about from the auto-discovery efforts of a failed-over managed switch device remain managed by the Switch Plugin on the recipient Appliance.

- **Managed Switch Failback to the Original Appliance.** When failback occurs, only the failed-over managed switch device is re-assigned back to the original Appliance.

Failover Clusters

A **Failover Cluster** defines a group of geographically/logically connected Appliances, such as those at a data center. A Failover Cluster is the basic unit of failover. Appliances within a Failover Cluster that fail, can fail over to other Appliances in the cluster. For example, if you create Failover Cluster *New York*, an Appliance within the cluster that fails can fail over to the other Appliances in the cluster.

Failover Scope

In addition to supporting failover within a single Failover Cluster, you can configure a **Failover Scope** for a cluster, consisting of multiple clusters, to allow failover across clusters. This allows distribution of endpoint, and switch and wireless device assignments to a wider range of Appliances in the case of Appliance failure, and allows you to protect and back up an entire site to other sites in a different geographic location.
When an Appliance fails, its handled endpoints and network devices are first distributed to other Appliances that have free capacity within the same Failover Cluster. When no Appliances in the cluster have free capacity, assignments are distributed to Appliances in other clusters in the Failover Scope.

For example, you can add Failover Cluster New Jersey to the Failover Scope of the New York cluster. The scope will consist of both New Jersey and New York. If an Appliance from New York fails, its handled assignments are distributed across Appliances from New York and New Jersey, with a preference to local, intra-cluster Appliances from New York. If the entire New York site fails, its assignments are distributed across Appliances from New Jersey.

When a failover occurs, the endpoint capacity of the recipient Appliance/s may be exceeded. See Handling Endpoints that Exceed Capacity for more information.

A single cluster can be in the scope of more than one other cluster. Scope definitions are per-cluster and are not bidirectional. So, for example, adding the Failover Cluster New Jersey to the Failover Scope of the New York cluster does not automatically add New York to the scope of the New Jersey cluster.

See Configure Failover Cluster Settings for information about configuring Failover Clusters.

Failover Cluster Folder Type

A Failover Cluster folder type in the CounterACT Devices pane allows users to configure failover.
Failover Clusters integrate with the existing Appliance Folders feature, which lets you organize your network Appliances into logical groups in a tree structure, helping you to create a visual representation of your network Appliance deployment. Refer to the chapter on Managing Groups of Appliances in the CounterACT Console User Manual for information about organizing Appliances using Appliance folders. See Additional CounterACT Documentation.

Begin Working with Failover Clustering

To begin working with Failover Clustering, you need a Failover Clustering license. This requires you to first install the Failover Clustering Module, which enables viewing and usage of the feature in the Console. The installation package is in the form of a CounterACT plugin. Until this plugin is installed with a valid license, interface elements related to the feature will not appear in the Console.

- Failover Clustering License Requirements
- Install the Plugin

Failover Clustering License Requirements

This feature requires a Failover Clustering license. The installation package for the license is in the form of a CounterACT plugin. When installing the plugin you are provided with a 30-day demo license.

If you would like to continue exploring the feature before purchasing a permanent license, you can request a demo license extension. Consult with your ForeScout representative before requesting the extension. You will receive email notification and alerts at the Console before the demo period expires.

When the demo period expires, you will be required to purchase a permanent license. In order to continue working with the feature, you must purchase the license.

Demo license extension requests and permanent license requests are made from the CounterACT Console.
Requesting a License

When requesting a demo license extension or permanent license, you are asked to provide the device capacity requirements. This is the number of endpoints/network devices that you want this license to handle. You must define the number of endpoints/network devices that you want covered by Failover Clusters. You can request a license that handles more to ensure that you are licensed for support on additional endpoints/network devices as your deployment grows.

Enter this number in the Devices pane of the Module License Request wizard, in the CounterACT, Console Modules pane.

More License Information

See the CounterACT Console User Manual for information on requesting a permanent license or a demo license extension. You can also contact your ForeScout representative or license@forescout.com for more information.

Install the Plugin

The installation package is in the form of a CounterACT plugin.

To install the plugin:

1. Navigate to the Customer Support, ForeScout Modules page and download the plugin .fpi file.
2. Save the file to the machine where the CounterACT Console is installed.
3. Log into the CounterACT Console and select Options from the Tools menu.
5. Select Install. The Open dialog box opens.
6. Browse to and select the saved plugin .fpi file.
7. Select Install.
8. If you have not yet purchased a permanent license, a message appears indicating that the plugin will be installed with a demo license. Select Yes and then select Install.
9. An installation or upgrade information dialog box and an End User License Agreement will open. Accept the agreement to proceed with the installation.
10. When the installation completes, select Close. The plugin is displayed in the Plugins pane. The Module Status column indicates the status of your license. See Failover Clustering License Requirements or the CounterACT Console User Manual for details on requesting a permanent license or a demo license extension.

Configuring Failover

To configure failover in your environment, perform the following tasks:

- Add a Failover Cluster
- Configure Failover Cluster Settings
Add a Failover Cluster

Configure a cluster of Appliances that will back up each other and provide failover support in case one or more of the Appliances in the cluster fails. Add a Failover Cluster under the Appliances root folder or under a regular Appliance subfolder. Appliance Folders can be added under a Failover Cluster, but Failover Clusters cannot be added under another Failover Cluster or any of its sub-folders.

Adding an Appliance to a Failover Cluster automatically enables failover for the Appliance. See Configure Failover per Appliance.

Configure Failover Cluster Settings to convert an Appliance Folder to a Failover Cluster.

To add a Failover Cluster:

1. Select Options from the Tools menu.
2. Select CounterACT Devices.
3. Select the location in the Devices folder where you want to add the Failover Cluster.
5. Name the cluster and select OK.

Configure Failover Cluster Settings

Define Failover Cluster settings, including enabling failover, setting the Failover detection time period and defining the scope for the cluster.

If you are configuring these settings on an Appliance Folder, selecting the Enable Failover Cluster checkbox in the configuration dialog box converts the folder to a Failover Cluster. Clearing this checkbox converts the cluster back to a regular folder.

To configure failover settings:

1. Select Options from the Tools menu.
2. Select CounterACT Devices.
3. Select an Appliance Folder or Failover Cluster and then select Configure Failover. The Configure Failover Settings for Failover Cluster dialog box opens.
4. Select **Enable Failover Cluster** to enable failover capabilities for all Appliances in the cluster. Enabling the cluster also changes the per-Appliance failover configuration to *enabled* for all Appliances in the cluster. See **Configure Failover per Appliance**. Disabling a cluster that is in the Failover Scope of one or more other clusters will remove it from the scope of these clusters.

If you are configuring an Appliance Folder, selecting this checkbox converts the folder to a Failover Cluster. Clearing this checkbox converts the cluster back to an Appliance Folder.

5. Select a **Failover detection time**, in minutes. The Failover detection time is the time it takes CounterACT to detect that an Appliance has failed. The minimum and default time period is 3 minutes, to ensure that any disconnection from the Enterprise Manager is not temporary and to reduce false positive failovers.

Failure detection starts once the configured number of minutes has passed, and can take up to an additional 30 seconds until failover occurs. For example, if you configured a failover detection time of 5 minutes, it may take up to 5 minutes and 30 seconds before the Appliance is considered failed.

Endpoints and network devices generally fail over to recipient Appliances immediately after the detection time has passed. The total failover time (failover detection time + time to failover to recipient Appliances) may depend on several additional factors, including the performance capabilities of the Appliances participating in failover.
6. You can view information about the cluster in the Failover Cluster Status section.

Cluster details:

- **Total Appliances.** Number of Appliances in the selected cluster, including how many are running (not failed), temporarily disconnected (not failed) and have failover enabled.

- **Originally Assigned Endpoints.** Number of endpoints originally assigned to Appliances in the cluster, excluding any endpoints that were assigned later as a result of failover.

- **Failover Excess.** Number of endpoints that exceed Appliance capacity, and the percentage of such endpoints out of the number of originally assigned endpoints.

- **Cluster Free Capacity.** Number of endpoints that are currently available for the Failover Cluster to handle.

7. Define a Failover Scope for this cluster by assigning one or more clusters whose Appliances will serve as failover recipients. Select a cluster or folder from the Available Failover Clusters list and select Add to move it to the Selected Failover Scope list. You can add multiple clusters. If you add an Appliance Folder to the scope, it is automatically converted to a Failover Cluster.

If an Appliance within this Failover Cluster fails, the Appliance will fail over to Appliances within the Failover Scope, with a preference for local, intra-cluster Appliances.

8. You can view information about the cluster’s scope in the Failover Scope Simulation section at the bottom of the dialog box. As you add/remove clusters to/from the scope, the scope details are updated.

Scope details:

- **Scope Free Capacity.** Number of endpoints that are currently available for Appliances in the Failover Scope to handle.

- **Failover Excess: Appliance Failure.** Simulation of the highest number of endpoints that will exceed Appliance capacity if any single Appliance in the scope fails.
Failover Clustering

− **Failover Excess: Current Cluster Failure.** Simulation of the number of endpoints that will exceed Appliance capacity if the entire current cluster fails.

− **Failover Excess: Any Cluster Failure.** Simulation of the highest number of endpoints that will exceed Appliance capacity if an entire cluster in the scope fails.

9. Select **OK**.

Configure Failover per Appliance

Adding an Appliance to a Failover Cluster automatically enables failover for the Appliance. You can manually disable failover for an Appliance if you do not want it to participate in a failover scenario. The Appliance must be in a Failover Cluster to enable failover.

If failover is enabled for an Appliance:

- The Appliance will receive and handle workloads from other failed Appliances in the same Failover Cluster and, if part of a Failover Scope, from Appliances in other clusters.
- If the Appliance fails, the Appliance workload will be distributed to other Appliances in the same Failover Cluster and, if relevant, to the defined Failover Scope.

To configure failover for an Appliance:

1. Select **Options** from the Tools menu.
2. Select **CounterACT Devices**.
3. Select one or more Appliance from the table in the CounterACT Devices pane.
4. Right-click the Appliance/s and select **Failover > Enable** or **Disable**.

View Information about Failover Status

You can view updated information about the status of Failover Clusters in the **Failover Status** table.

To view failover status information:

1. Select **Options** from the Tools menu.
2. In the Options list, expand **CounterACT Devices** and select **Failover Status**. The Failover Status Table opens.
You can add or remove columns to view specific information. Right-click a column and select **Remove Column**.

Failover Status Table

The Failover Status table contains the following information:

- **Failover Cluster.** Name of the cluster.
- **Appliances.** Number of Appliances in the selected cluster.
- **Running Appliances.** Number of Appliances in the selected cluster that are running and not in a state of failover. If there are any temporarily disconnected (but not failed) Appliances in the Failover Cluster, the number is indicated in red.

- **Originally Assigned Endpoints.** Number of endpoints originally assigned to Appliances in the cluster, excluding any endpoints that were assigned later as a result of failover.
- **Failover Excess.** Number of endpoints that exceed Appliance capacity, and the percentage of such endpoints out of the number of originally assigned endpoints.
- **Cluster Free Capacity.** Number of endpoints that are currently available for the Failover Cluster to handle.
- **Failover Scope.** Scope of clusters that back up failed Appliances within the selected cluster.
- **Scope Free Capacity.** Number of endpoints that are currently available for Appliances in the Failover Scope to handle.

The following information, not shown by default, can be displayed in the table.

- **Failover-Enabled Appliances.** Number of Appliances in the selected Failover Cluster that have failover enabled.
- **Failover Excess: Appliance Failure.** Simulation of the highest number of endpoints that will exceed Appliance capacity if any single Appliance in the scope fails.
- **Failover Excess: Current Cluster Failure.** Simulation of the number of endpoints that will exceed Appliance capacity if the entire current cluster fails.
- **Failover Excess: Any Cluster Failure.** Simulation of the highest number of endpoints that will exceed Appliance capacity if an entire cluster in the scope fails.
Performing Manual Failover

You can manually fail over one or more Appliances. You may want to perform manual failover if, for example, you want to continue to handle endpoints while maintenance work is being performed on an Appliance. When finished, you can manually fail back the Appliance.

The following limitations apply to an Appliance that is manually failed over:

- Failover cannot be disabled for the Appliance
- The Appliance cannot be moved to a different folder
- Plugin functionality is stopped, and plugins cannot be manually started

To manually fail over an Appliance:

1. Select **Options** from the Tools menu.
2. Select **CounterACT Devices**.
3. Select the Appliance/s you want to manually failover.
4. Right-click and select **Failover > Manually Fail Over**.
5. Select **Yes** to confirm.

To manually fail back the Appliance, right-click the Appliance/s and select **Failover > Manually Fail Back**.

Distribution of Workload upon Failover

When Appliance/s fail, the workload of the Appliance is distributed using an internal mechanism across the Failover Cluster/Scope such that the recipient Appliance/s can best handle the newly acquired failover assignment. This is done so that the recipient Appliance/s are not overburdened or unable to handle the additional devices. A single IP Range assignment may be distributed across multiple Appliances.

Endpoints and network devices are first distributed to other Appliances that have free capacity within the same Failover Cluster. When no Appliances in the cluster have free capacity, assignments are distributed to Appliances in other clusters in the Failover Scope.

The new IP assignment of recipient Appliances is not reflected in the Console, in, for example, the Assigned IPs column in the CounterACT Devices pane. You can, however, view which recipient Appliance is handling a specific endpoint. See View Indication of Recipient Appliances Handling Endpoints.

Recalculation of Failover Assignments

In a CounterACT environment where one or more Appliances failed, the following events trigger a recalculation of the failover assignments, and may cause these assignments to be redistributed:

- An Appliance reconnects after failure
- An Appliance is removed from a Failover Cluster
- An Appliance is added to a Failover Cluster
- A Failover Scope assignment is changed
- A Failover Cluster is enabled/disabled
- Failover is disabled/enabled for an Appliance

Handling Endpoints that Exceed Capacity

A permanent license, issued per Appliance, includes the number of endpoints allotted to the Appliance. This is the Appliance Capacity. Refer to the section on Appliance Bandwidth and Endpoint Capacity in the *CounterACT Console User Manual*. See [Additional CounterACT Documentation](#).

When a failover occurs, and an Appliance receives a Failover Assignment, the Appliance Capacity may be exceeded. In such a case, any endpoints exceeding the capacity are not fully handled by the Appliance. Such *Failover Excess* endpoints are displayed in the Console Detections pane, but not all of their host properties are fully resolved. This means that these endpoints will not match policies that depend on such unresolved properties, and as a result, the relevant actions will not be applied to the endpoints.

You can track the number of excess endpoints by viewing the *Failover Excess* column in the *Failover Status* table. When configuring Failover Clusters, verify that you have sufficient capacity to handle all endpoints so that no endpoints exceed capacity if a failure occurs. See [View Information about Failover Status](#) for more information. You can also view excess endpoints using a filter in the Detections pane. See [Filter Endpoint Failover Information](#) for more information.

Viewing Failover Information in the Console

View endpoint, switch device, WLAN device and Appliance information related to failover in the Console.

- [View Endpoint Failover Information](#)
- [View Switch Device Failover Information](#)
- [View WLAN Device Failover Information](#)
- [View Appliance Failover Information](#)

View Endpoint Failover Information

Several interface elements in the CounterACT Detections pane support the Failover feature.

- [View Indication of Recipient Appliances Handling Endpoints](#)
- [Filter Endpoint Failover Information](#)
View Indication of Recipient Appliances Handling Endpoints

During a failover scenario, the **Appliance** column in the Detections pane displays the Appliance name in orange text and with an asterisk (e.g. *10.10.1.22*) for handled endpoints that are currently handled by a recipient Appliance due to failover.

An **Appliance** column tooltip is displayed for handled endpoints that are currently failed over to a recipient Appliance, containing information about the following Appliances:

- **Current**. Current Appliance (recipient) handling the endpoint, after failover.
- **Original**. Original Appliance that handled the endpoint, prior to failover.

Filter Endpoint Failover Information

If a failover occurs in your deployment, you can filter the view of endpoints at the Detections pane, based on the following:

- **Failover\Non-Failover**. All endpoints, including both those handled by their originally assigned Appliance and those handled by a failover recipient Appliance.

- **Failover\Failover Excess**. All endpoints handled by a failover recipient Appliance, including endpoints that exceeded the capacity of the failover recipient Appliance and that are not fully handled by the Appliance.

- **Failover Excess**. Endpoints that exceeded the capacity of the failover recipient Appliance and that are not fully handled by the Appliance. See Handling Endpoints that Exceed Capacity for more information.

View Switch Device Failover Information

During a failover scenario, the **Managed By** column in the Switch pane displays the Appliance name in orange text and with an asterisk (e.g. *10.10.1.22*) for managed...
switch devices that are currently failed over to a recipient Appliance due to failover. The current status of the Appliance is also displayed.

A Managed By column tooltip is displayed for managed switch devices that are currently failed over to a recipient Appliance, containing the following information:

- **Current.** Current managing Appliance, after failover.
- **Original.** Original managing Appliance, prior to failover.
- **Plugin status.** The plugin status on the current Appliance is \{plugin status\}. Possible statuses are Running, Not Running and Initializing.

View WLAN Device Failover Information

During a failover scenario, the Wireless pane displays the following information in the Managed By column for managed WLAN devices that are currently failed over to a recipient Appliance:

- \{current managing Appliance, after failover\} * (\{current managing Appliance status\})

A Managed By column tooltip is displayed for managed WLAN devices that are currently failed over to a recipient Appliance, containing the following information:

- **Current.** Current managing Appliance, after failover.
- **Original.** Original managing Appliance, prior to failover.
- **Plugin status.** The plugin status on the current Appliance is \{plugin status\}. Possible statuses are Running, Not Running and Initializing.
View Appliance Failover Information

Appliance failover details can be viewed in the CounterACT Devices pane.

- Appliance and Failover Cluster Failure Warning Icons
- Appliance Health Information
- Failover Scope Column

Appliance and Failover Cluster Failure Warning Icons

The following icons appear in the CounterACT Devices pane in certain circumstances:

- Appears in the Devices folder list when a Failover Cluster contains one or more failed Appliances.

- Appears in the Status column of the CounterACT Devices table when the given Appliance has failed.

Appliance Health Information

The Status section of the CounterACT Devices pane, containing Appliance health details, includes an entry related to failover. The entry, Endpoints (Failover), contains the following information:
Total number of endpoints handled by the Appliance:

- Endpoints that are part of the original IP assignment of the Appliance.
- Endpoints that are now handled by the recipient Appliance due to a failover assignment from another Appliance.
- Number of **Failover Excess** endpoints that have exceeded CounterACT device capacity and are not fully handled by any CounterACT device.

CounterACT device capacity. See [Handling Endpoints that Exceed Capacity](#).

This information is only displayed if failover is enabled for the Appliance and an Appliance failure occurs. See [Configure Failover per Appliance](#) for more information.

Failover Scope Column

View the Failover Clusters that the selected Appliance will fail over to, including the Failover Cluster that the selected Appliance belongs to. This information appears in the CounterACT Devices pane, **Failover Scope** column. This column appears when a Failover Cluster is selected. It also appears when a regular Appliance Folder containing a Failover Cluster as a sub-folder is selected, if the **Show sub-folders** option is selected.

<table>
<thead>
<tr>
<th>Status</th>
<th>Type</th>
<th>Device Name</th>
<th>IP Name</th>
<th>IP Address</th>
<th>Assigned IPs</th>
<th># Hosts</th>
<th>User Scope</th>
<th>Failover Scope</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10.0.0.1</td>
<td>10.0.0.1</td>
<td></td>
<td>3</td>
<td>Complete</td>
<td>NY, NJ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10.0.0.1</td>
<td>10.0.0.1</td>
<td></td>
<td>3</td>
<td>Complete</td>
<td>NY, NJ</td>
</tr>
</tbody>
</table>

If the selected Appliance is in a Failover Cluster, an icon ⊘ appears if failover is disabled. If the selected Appliance is not in a Failover Cluster, the status **No Failover** is displayed.

Tracking Failover Activity

You can display selected information about failover activity in the CounterACT Audit Trails log and Event Viewer. Email alerts are also sent for selected activities. A MIB Table for CounterACT Appliances provides objects that report information about failover, and SNMP trap notifications are issued when the value of a configuration, status, or performance attribute of the MIB Table changes on an Appliance.

- **Audit Trail**
- **Event Viewer**
- **Email Alerts**
- **MIB Table Objects**
- **SNMP Trap Notifications**
Refer to the CounterACT Console User Manual for more information about any of these tracking methods. See Additional CounterACT Documentation.

Audit Trail

The Audit Trail reports indicate the following information about users who have modified failover configuration settings:

- When a user adds/removes an Appliance to/from a Failover Cluster.
- When a user assigns/removes a Failover Cluster to/from a Failover Scope.
- When a user enables or disables a Failover Cluster.
- When a user performs manual failover/failback on an Appliance.

To access the Audit Trail:

1. Select Audit Trails from the Log menu.
2. Enter a time period and select OK. The Audit Trails log opens.

Event Viewer

The Event Viewer indicates:

- When an Appliance fails.
- When an event occurred which caused a recalculation of failover assignments within a Failover Cluster, a reassignment of the failover assignment to other Appliances, and potentially an excess of endpoints that will not be fully handled by any Appliance.
- When an Appliance fails back and resumes managing assignments that were transferred during a failover.
To access the Event Viewer:

1. Select Event Viewer from the Log menu. The Event Viewer opens.

Email Alerts

An email alert is sent to the CounterACT operator for each event reported in the Event Viewer. Refer to the section on managing email notification addresses in the CounterACT Console User Manual for information on configuring the address to which CounterACT sends email alerts. See Additional CounterACT Documentation.

MIB Table Objects

The following are CounterACT Appliance MIB objects associated with failover:

ctDeviceFailoverStatus

OID: .1.3.6.1.4.1.11789.4.3.1.16

Indicates the status of the CounterACT device and whether or not it has experienced failover.

Possible states are:

- **Ok (1)** Indicates that the CounterACT device is running.
- **Failed (2)** Indicates that the CounterACT device has failed to connect to the Enterprise Manager for the configured timeout period.

The following related trap notifications are provided:

- ctDeviceFailoverStatusChangedTrap
- ctConfigurationChangedTrap

ctDeviceFailoverConfig

OID: .1.3.6.1.4.1.11789.4.3.1.17

Indicates the status of the failover feature on the CounterACT Appliance. Possible states are:

- **Enabled (1)** Indicates that failover is enabled on the CounterACT device.
- **Disabled (2)** Indicates that failover is disabled on the CounterACT device.

ctFailoverClusterName

OID: .1.3.6.1.4.1.11789.4.3.1.18

Indicates the name of the Failover Cluster that the CounterACT device belongs to.
The following related trap notification is provided:
 - ctConfigurationChangedTrap

ctNumberOfFailoverEndpoints

OID: .1.3.6.1.4.1.11789.4.3.1.19

Indicates the number of endpoints handled by this CounterACT device due to a failover assignment.

ctNumberOfFailoverExcessEndpoints

OID: .1.3.6.1.4.1.11789.4.3.1.20

Indicates the number of endpoints that exceed the CounterACT device capacity as a result of a failover.

The following related trap notifications are provided:
 - ctDeviceFailoverCapacityExceeded
 - ctDeviceFailoverCapacityNormal

SNMP Trap Notifications

CounterACT Appliance trap notifications associated with the failover feature can contain the following MIB objects:

ctDeviceFailoverStatusChangedTrap

OID: .1.3.6.1.4.1.11789.0.34

This trap notification is sent when there is a change in the ctDeviceFailoverStatus MIB attribute.

ctDeviceFailoverCapacityExceeded

OID: .1.3.6.1.4.1.11789.0.35

This trap notification is sent when the CounterACT device has exceeded its configured capacity as a result of a failover.

This alarm trap is cleared by the ctDeviceFailoverCapacityNormal trap notification.

ctDeviceFailoverCapacityNormal

OID: .1.3.6.1.4.1.11789.0.36

This trap notification is sent when the CounterACT device no longer exceeds its configured capacity.

This trap notification is only sent after a ctDeviceFailoverCapacityExceeded alarm trap was sent.

System Backup

Performing a system backup will store configuration changes made in the Console related to the failover feature.
Failover on High Availability Systems

Failover occurs on High Availability systems if the Active node fails and the Standby node does not take over within the failover detection time. See Configure Failover Cluster Settings for more information about the failover detection time period.

Features Not Currently Supported

Continuity of visibility, information and enforcement is not currently available for:

- Endpoints connecting via VPN
- ForeScout extended modules

See Continuity of Endpoint, Switch and Wireless Device Visibility, Information and Enforcement for more information.
High Availability Pairing

A CounterACT High Availability system provides you with standby support in the event of system malfunction or failure. It is implemented in pairs of two CounterACT devices; either two Appliances or two Enterprise Managers. Redundancy is achieved by assigning an Active node to manage activities required for effective NAC, and a Standby node to take over in case the Active node fails. The two nodes are synchronized by a redundant pair of interconnecting cables.

- **Primary Node**: the node you use to set up high availability. It is initially the Active node.
- **Secondary Node**: the node that you set up to take over if the primary node fails. It is initially the Standby node.
- **Active Node**: The active node manages your environment. Only one node is active at a time.
- **Standby Node**: The operating system on the passive node is active and ready to be used as the failover system.
License Setup Requirements

The demo license for your High Availability system is valid for 30 days. You must install a permanent license before this period expires. You will be contacted via email regarding the expiration date of the license.

CounterACT virtual systems do not come with a demo license.

You should use the IP address of the High Availability pair when requesting a High Availability license. If a license is only issued to the Active node in a High Availability pair, the system may not operate after failover to the Standby node.

Both nodes must be up when requesting a license.

Network Access Requirements

Deploying CounterACT requires TCP/IP communication. This section details CounterACT connectivity requirements. Check your security policy (Router ACLs etc.), and modify it, if required, to allow for this communication.

Each Appliance requires a single management connection to the network. This connection requires an IP address on the local LAN and port 13000/TCP access from machines that run the CounterACT Console. The connectivity listed in the following table is required.

This section details minimum connectivity requirements needed for Appliances in High Availability systems. For a complete list of requirements for CounterACT devices, refer to the CounterACT Installation Guide. See Additional CounterACT Documentation.

<table>
<thead>
<tr>
<th>Port</th>
<th>Service</th>
<th>To or From CounterACT</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>22/TCP</td>
<td>SSH</td>
<td>From</td>
<td>Allows remote inspection of OS X and Linux endpoints. Allows CounterACT to communicate with network switches and routers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>To</td>
<td>Allows access to the CounterACT command line interface.</td>
</tr>
<tr>
<td>2222/TCP</td>
<td>SSH</td>
<td>To</td>
<td>(High Availability) Allows access to the physical CounterACT devices that are part of the High Availability pair. Use 22/TCP to access the shared (virtual) IP address of the pair.</td>
</tr>
<tr>
<td>53/UDP</td>
<td>DNS</td>
<td>From</td>
<td>Allows CounterACT to resolve internal IP addresses.</td>
</tr>
<tr>
<td>80/TCP</td>
<td>HTTP</td>
<td>To</td>
<td>Allows HTTP redirection.</td>
</tr>
</tbody>
</table>
Communication with the High Availability System

You will usually want to communicate with the High Availability pair (and not the individual CounterACT devices that make up the pair). Use 22/TCP to access the CounterACT command line interface of the shared (virtual) IP address of the pair.

If you do need to access a physical CounterACT device that is part of the High Availability pair, use 2222/TCP. Note that the CLI prompt in this case begins with Miniroot.

Many commands (in particular, `fstool service status`) work on the shared IP address only. Running them at the Miniroot prompt does not work.

Switch Connectivity

Below are examples of High Availability pair-switch connections. In the relevant examples, the switch must support Dual Span sessions.
Dual cross cables must be connected for redundancy.
Connecting to the Network

This section shows sample ports and connectors for a single CounterACT device.

- **CT-R Appliances are not supported in High Availability pairs.**

CT-1000 Appliance Rear Panel

CT-1000 – Sample Connections

<table>
<thead>
<tr>
<th>Interface</th>
<th>Cable</th>
<th>Interface</th>
<th>Cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>eth0</td>
<td>Management-1</td>
<td>eth4*</td>
<td>Monitoring-2*</td>
</tr>
<tr>
<td>eth2</td>
<td>Monitoring-1</td>
<td>eth5*</td>
<td>Response-2*</td>
</tr>
<tr>
<td>eth3</td>
<td>Sync-1</td>
<td>eth7</td>
<td>Sync-2</td>
</tr>
<tr>
<td>eth1</td>
<td>Response-1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Only for redundant switch configuration.

- **It is recommended to use two sync cables whenever possible. In addition, you can attach the sync>management cables to sockets on different NICs to improve handling of NIC failure with all attached sockets.**

Failover

The Active and Standby nodes ping each other every second for operational updates. By default, failover from the Active node to the Standby node occurs 45 seconds after the Standby node detects that the Active node is down.

Between 2 to 10 minutes after Active node failure, the Standby node becomes the Active node.

Failover Triggers

Full High Availability mode requires that both nodes are up and that the Standby node is synchronized with the Active node and is fully up-to-date.

When full High Availability mode is in effect, any of the following cause the Standby node to become the Active node:

- System failure: Active node outage
- System failure: Hardware RAID array breakdown; that is, some disks are not functioning
- System maintenance: Active node powered off or cold boot occurred
Management interface failure: A management interface hardware failure on the Active node. Failover occurs in this case only if you defined ping nodes during High Availability setup.

Management interface failure does not act as a failover trigger if you upgraded from CounterACT version 6.3.4.x to version 7.0.0. To enable this failover trigger you must reconfigure High Availability with the previous ping node setup by running fstool ha_setup on both nodes.

Node Status
The status of the Active and Standby nodes is affected by restarts as follows:

- **Restart Active node**: In case the Active node fails, the Standby node becomes the Active node (swapping roles). After restart, the switchover remains in effect; that is, the Active node that originally failed remains the Standby node, and the newly appointed Active node continues with that role.

- **Restart Standby node**: After restarting the Standby node, the Active/Standby roles do not change.

- **Both nodes are restarted**: Depending on which node restarts first, the nodes can remain as originally designated or assume reverse roles; the first node to restart becomes the Active node.

Installing High Availability Software
During the installation procedure, the nodes are referred to as the Primary node and the Secondary node. The nodes are referred to as the Active node and the Standby node after installation and during operation, according to their current status.

The installation and configuration procedure is performed in three main stages:

1. Set up High Availability for the Primary node.
2. Configure the Primary node.
3. Set up High Availability for the Secondary node. There is no need to configure the Secondary node—the configuration is taken from the Primary node during synchronization.

Reboots may occur during these stages. This does not indicate any type of failure or problem.

The setup process may take a long time. Do not reboot the system manually during the setup process.

Identifying Ethernet Ports
If you do not know the Ethernet port layout of either the Primary or Secondary node rear panel, follow the following procedure before configuring CounterACT.
To identify Ethernet ports:

1. Power on the CounterACT device.

CounterACT <version>-<build> options:

1) Configure CounterACT
2) Restore saved CounterACT configuration
3) Identify and renumber network interfaces
4) Configure keyboard layout
5) Turn machine off
6) Reboot the machine

Choice (1-6) :

2. To identify the ports on the rear panel of the Appliance, type 3 and press Enter.

 Text is displayed indicating which interface has been detected. The associated port LED blinks on the rear panel.

3. Label the port on the panel so that it is easily identifiable and press Enter.

 More text is displayed indicating the next detected interface. The associated port LED now blinks.

4. Label this port as well and press Enter. This process continues until all active interfaces are detected and you have labeled the associated port for each active interface.

5. Once all interfaces have been detected, press Enter.

Primary Node CounterACT Device Setup

The High Availability pair is also referred to as a cluster in the CLI.

To set up a CounterACT device as a High Availability Primary node:

1. Power on the CounterACT device.

CounterACT <version>-<build> options:

1) Configure CounterACT
2) Restore saved CounterACT configuration
3) Identify and renumber network interfaces
4) Configure keyboard layout
5) Turn machine off
6) Reboot the machine

Choice (1-6) :

2. If necessary, identify the device interfaces as described in the preceding section.

 When you have finished, the menu reopens.

3. Type 1 and press Enter.
Select High Availability Mode:
1) Standard Installation
2) High Availability – Primary Node
3) High Availability – Secondary Node

Note: If you are adding a node to an existing primary/secondary active node, select option 3

Choice (1-3) [1] :

4. Type 2 and press Enter.

>>>>>> CounterACT Initial Setup (High Availability - primary node) <<<<<<
You are about to setup CounterACT primary High Availability node.
Note that High Availability mode requires 2 CounterACT machines.
During the initial setup process you will be prompted for basic parameters used to connect the High Availability cluster to the network.
When this phase is complete, you will be instructed to continue the setup from the CounterACT Console.
Continue? (yes/no) :

5. Type yes and press Enter to continue.

>>>>>> Select CounterACT Installation Type <<<<<<
1) CounterACT Appliance
2) CounterACT Enterprise Manager

Choice (1-2) :

6. Type 1 or 2 and press Enter.

>>>>>> Enter Machine Description <<<<<<
Enter a short description of this machine (e.g. New York office).

Description [<Enterprise Manager|Appliance>] :

7. Type a description and press Enter.

>>>>>> Set Administrator Password <<<<<<
This password will be used to log in as ‘root’ to the machine Operating System and as ‘admin’ to the CounterACT Console.
The password must be between 6 and 15 characters long and must contain at least one non-alphabetic character.

Administrator password :

8. Type the string that is to be your password (the string is not echoed to the screen) and press Enter. You are asked to confirm the password:

Administrator password (confirm) :

9. Retype the password and press Enter.
High Availability Pairing

>>>>>> Set Host Name <<<<<<

It is recommended to choose a unique host name.

Host name :

10. Type a host name and press **Enter**.

Suggestion: *When upgrading, use the previous host name.*

- The host name can be used when logging into the Console. In addition, it is displayed on the Console to help you identify the CounterACT Appliance that you are viewing. The hostname should not exceed 13 characters.
- When you enter a pair host name, for example, High_Availability_pair, the system will automatically assign the name High_Availability_pair-1 to the Primary node and the name High_Availability_pair-2 to the Secondary node. You should add these in the DNS server.

The **Cluster management interface** prompt is displayed (subsequent prompts are displayed after you enter a value for the preceding prompt):

>>>>>> Configure Network Settings <<<<<<

Cluster management interface (one of: <interface_list>) :
Cluster management IP address :
Network mask [255.255.255.0] :
Default gateway :
Domain name :
DNS server addresses :

11. Type a value at the **Cluster management interface** prompt and press **Enter**. The number of pair/cluster management interfaces listed depends on the Appliance model.

12. Type a value at each subsequent prompt and press **Enter**.

- The gateway address should be within the network of the pair/cluster address.
- The **Cluster management IP address** is the address of the interface through which CounterACT components communicate. Add a VLAN ID for this interface only if the interface used to communicate between CounterACT components is connected to a tagged port.

Suggestion: *When upgrading, use the previous IP address of the pair.*

- If there is more than one **DNS server address**, separate each address with a space—Most internal DNS servers resolve external addresses as well but you may need to include an external-resolving DNS server. As nearly all DNS queries performed by the Appliance will be for internal addresses, the external DNS server should be listed last.

The **Enter the Fully Qualified Domain Name** prompt is displayed:

>>>>>> Set Fully Qualified Domain Name <<<<<<

Enter the Fully Qualified Domain Name (or ‘none’) [<FQDN>] :
13. Type the fully qualified domain name of the pair/cluster management interface.

The **This node physical IP Address** prompt is displayed:

```
>>>>>> High Availability Parameters <<<<<<
This node physical IP Address :
Other node physical IP Address :
Management IPv6 address or 'none' :
Select the dedicated primary sync interface (one of:
<interface_list>) :
Configure the dedicated secondary sync interface ? (yes/no)
[yes] :
Sync subnet [172.17.2.0] :
```

The number of sync interfaces listed depends on the Appliance model. (The list for the primary sync interface excludes the pair/cluster management interface specified in step 10; the list for the secondary sync interface excludes the pair/cluster management interface and the primary sync interface.) Unless the nodes are synchronized via cross cable, you should configure different sync subnets for different pairs.

Suggestion: When upgrading, use the previous sync interface, otherwise you may lose connections in the Control screen.

14. Type a value at the **Select the dedicated primary sync interface** prompt and press **Enter**.

15. Type a value at each subsequent prompt and press **Enter**. After pressing **Enter** at the last prompt, the setup summary is displayed:

```
>>>>>> Setup Summary <<<<<<
Role:                          <CounterACT_device_type>
Cluster host name:             <user_entered_value>
Description:                   <user_entered_value>
Cluster management Interface:  IP: <user_entered_value >,
                               Interface: eth<n>,
                               Netmask: <user_value>
This node physical IP address: <user_entered_value>
Other node physical IP address: <user_entered_value>
Primary sync interface:        eth<n>
Secondary sync interface:      eth<n>
Default gateway:               <user_entered_value>
DNS server:                    <user_entered_value>
Domain name:                   <user_entered_value>
(T)est,(R)econfigure,(D)one :
```

16. To test the configuration, type **T** and press **Enter**.

```
* Attempting to retrieve the parameters from <address> *
```

The address is 172.17.2.171 (based on the default subnet, 172.17.2.0).

The test verifies the following:
- Storage I/O performance (Virtual systems only)
- Connected interfaces
- Connectivity of the default gateway
- DNS resolution

Results indicate if any test failed so that you can reconfigure if necessary.

If there are no failures, the following is displayed:

Checking eth0...OK. (100Mb/s Full duplex)
Checking default gateway...OK.
Checking DNS resolution...OK.

Press ENTER to review configuration summary

17. Press Enter. The setup summary is displayed again.

18. To complete the installation, type D and press Enter.

Finalizing CounterACT setup, this will take a few minutes

After setup is complete, the following is displayed:

CounterACT <version-build> is booting...

And then:

Setting up HA primary node...

19. Continue by setting up the Secondary node.

Secondary Node CounterACT Device Setup

Before you begin setting up the Secondary node CounterACT device, verify that the Primary node CounterACT device is powered on, set up, and successfully configured.

When setting up the Secondary node CounterACT device, use the same sync interfaces and netmask settings used in the Primary node CounterACT device.

To set up a CounterACT device as a High Availability Secondary node:

1. Power on the CounterACT device.

CounterACT <version>-<build> options:
1) Configure CounterACT
2) Restore saved CounterACT configuration
3) Identify and renumber network interfaces
4) Configure keyboard layout
5) Turn machine off
6) Reboot the machine

Choice (1-6) :

2. If necessary, identify the device interfaces as described in Identifying Ethernet Ports.

When you have finished, the preceding menu reopens.

3. Type 1 and press Enter.
Select High Availability Mode:

1) Standard Installation
2) High Availability - Primary Node
3) High Availability - Secondary Node

Note: If you are adding a node to an existing primary/secondary active node, select option 3

Choice (1-3) [1] :

4. Type 3 and press Enter.

>>>> CounterACT Initial Setup (High Availability - secondary node) <<<<
You are about to setup CounterACT secondary High Availability node. Note that secondary High Availability mode configuration should be performed after the primary High Availability mode was configured.
Continue? (yes/no) :

5. Type yes and press Enter to continue.

The Select the dedicated primary sync interface prompt is displayed (subsequent prompts are displayed after you enter a value for the preceding prompt):

>>>>>>> Secondary High Availability Parameters <<<<<<
Select the dedicated primary sync interface (one of: <interface_list>) :
Sync subnet [172.17.2.0] :
Enter the root password of the primary node:

- The number of sync interfaces listed depends on the Appliance model.
- The root password of the Primary node is the password that you entered in step 8 of Primary Node CounterACT Device Setup.

6. Type a value at the Select the dedicated primary sync interface prompt and press Enter.

7. Type a value at each subsequent prompt and press Enter.

After pressing Enter at the last prompt, the setup summary is displayed:

>>>>> Setup Summary <<<<<<
Primary sync interface: eth<n>
Sync interface subnet: <user_entered_value>

(T)est,(R)econfigure,(D)one :

8. To test the configuration, type T and press Enter.

* Attempting to retrieve the parameters from <address> *

* The address is 172.17.2.171 (based on the default subnet, 172.17.2.0).
The test verifies the following:
- Storage I/O performance (Virtual systems only)
- Connected interfaces
- Connectivity of the default gateway
- DNS resolution

Results indicate if any test failed so that you can reconfigure if necessary.

If there are no failures, the following is displayed:

```
Secondary config tested successfully.
Press ENTER to review setup summary
```


The setup summary is displayed again.

10. To complete the installation, type D and press Enter.

```
Preparing the High Availability file system

After setup is complete, the following is displayed:

```
>>>>>> Rebooting the system <<<<<<

The first phase of the High Availability setup is complete
After the reboot, the final High Availability setup phase will
be performed automatically.
Rebooting in <n> seconds
```

**Shutting Down and Rebooting High Availability Devices**

You should shut down and reboot High Availability devices using fstool commands, and not the usual Linux commands.

**To shut down a High Availability CounterACT device:**

1. Run `fstool reboot -s`

**To reboot a High Availability CounterACT device:**

1. Run `fstool reboot`

**Moving a High Availability Pair**

**To move a High Availability pair from one network to another:**

1. Shut down the Standby node by running the command `fstool reboot -s`
2. Shut down the Active node by running the command `fstool reboot -s`
3. Relocate both CounterACT devices and connect them as described in [Connecting to the Network](#).
4. Restart the Active node.
5. Run `fstool ha_setup` on the Active node, making sure to use the new network settings.

6. Restart the Standby node.

7. Run `fstool ha_setup` on the Standby node. It is recommended to do this from the Linux Console since the management IP address will probably be different.

8. If the new DNS settings are different, run `fstool dns setup <new_DNS>` on both machines and reconfigure them.

9. If the new NTP settings are different, run `fstool ntp setup <new_NTP>` (<Optional_second_NTP_IP>) on both machines and reconfigure them.

10. Verify that the pair is up and running.

**High Availability Backup and Restore**

The backup and restore procedures for High Availability differ from the standard backup and restore procedures. If one of the nodes crashes, the other node takes over. If necessary, you can then install a new CounterACT device as a Standby node. To protect your system from a situation where both nodes crash or for some other reason you must back up the system while the High Availability pair is operational.

*You will require an external storage device to restore the configuration file.*

**To back up a High Availability pair:**

1. Connect the two CounterACT devices with redundant cross cables.

2. Perform a backup of the system settings and copy the configuration backup files to an external storage medium. Refer to the section on backing up system settings in the *CounterACT Console User Manual*. See Additional CounterACT Documentation.

**To restore a High Availability pair:**

1. Format the disk on each CounterACT device.

2. Reinstall the CounterACT software on the Primary node. Use the latest image file (*.ISO) that is available on the Product Downloads page of the Customer Support Portal.

3. Power on the first CounterACT device.

   ```
 CounterACT <version>-<build> options:
 1) Configure CounterACT
 2) Restore saved CounterACT configuration
 3) Identify and renumber network interfaces
 4) Configure keyboard layout
 5) Turn machine off
 6) Reboot the machine

 Choice (1-6) :
   ```

4. Type 2 and press **Enter**.
**High Availability Pairing**

---

### Restore options:

1) Restore from USB storage device  
2) Restore from CD-ROM  
3) Get shell prompt  
4) Reset to factory setup  
5) Cancel

**Choice (1-5) :**

5. **Type the number of the relevant restore option and press** **Enter**.

The restore process will now search for backup files in the selected media. Note that backup file names must have a ".fsb" extension. Insert the media where the backup file reside and press **ENTER** to continue.

6. **Insert the media where the backup file resides and press** **Enter**.

All FSB files found on the media are displayed.

<table>
<thead>
<tr>
<th>Searching for backup files in &lt;selected_storage_type&gt;...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choose backup file:</td>
</tr>
<tr>
<td>1) &lt;backup_file1_name&gt;.fsb</td>
</tr>
<tr>
<td>2) &lt;backup_file2_name&gt;.fsb</td>
</tr>
<tr>
<td>3) Cancel</td>
</tr>
</tbody>
</table>

**Choice (1-3) :**

7. **Type the number of the relevant backup file and press** **Enter**.

<table>
<thead>
<tr>
<th>Verifying &lt;full_path_and_file_name&gt;.fsb...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backup Volume Information</td>
</tr>
<tr>
<td>-------------------------------------------------------</td>
</tr>
<tr>
<td>Product : CounterACT</td>
</tr>
<tr>
<td>Host-name : &lt;host_name&gt;</td>
</tr>
<tr>
<td>Address : &lt;IP_address&gt;</td>
</tr>
<tr>
<td>Backup date : &lt;date_and_time_stamp&gt;</td>
</tr>
</tbody>
</table>

Verifying Backup volume, please wait.

| Restore? (yes/no) : |

8. **Type** **yes** **and press** **Enter**.

Setup the restored machine in High Availability mode? (yes/no) [no]

9. **Type** **yes** **and press** **Enter**. The original High Availability values were saved along with the backup and are presented as default values, which should be accepted. See **Primary Node CounterACT Device Setup** for more information about these values.

10. **Install the CounterACT software on the Secondary node.**

11. **Set up High Availability on the Secondary node, as described in** **Secondary Node CounterACT Device Setup**.

   - *Do not restore a backup to the Secondary node.*
12. Connect the redundant (dual) physical cables to the management, monitor and response ports between the CounterACT device and the switches after the configuration determines the layout of the Ethernet interfaces on the rear panel.

*When you backup and restore system settings using two different CounterACT devices, the interface numbering may change. To correlate the new interface numbering with the correct interfaces you must run `fstool ethtest` and reassign the interfaces accordingly.*

If you are restoring after upgrading the CounterACT version on the devices:

1. Log in to the Primary node and run the following command:
   `fstool upgrade`

**Restoring as a Standard Device**

Note that you can select to restore system settings to a standard device, even if the backup was taken from a High Availability device.

**Upgrading High Availability Systems to the Latest Version**

You can upgrade the CounterACT device version from the Console. For details about this procedure, refer to Chapter 15: Managing Appliances, Enterprise Managers and Consoles, Upgrading Appliance Software in the CounterACT Console User Manual. See Additional CounterACT Documentation.

*It is recommended to back up your system before performing the upgrade. See High Availability Backup and Restore for details on how to proceed.*

**Removing High Availability**

Use this procedure to remove High Availability mode from a pair.

*Until you perform the final step, you can re-activate the Active node and continue using High Availability mode.*

1. Back up the configuration of the Active node.
   If necessary, perform an rSite backup as well.

2. Make a clean, standard installation of the CounterACT software on the Standby node. (during this time the CounterACT services will continue to be provided by the Active node)

3. Disconnect the High Availability cables.
   This effectively removes the High Availability function from the CounterACT devices.
4. Shut down the Active node (it can be reactivated later if necessary) by running the command `fstool reboot -s`.

5. Restore the configuration data (and rSite data, if backed up previously) to the Standby node.

6. Verify that the Standby node is configured in standard mode (not High Availability) and is running.
   The Standby node is now a standalone CounterACT device.

7. Run a clean, standard installation of the CounterACT software on the Active node and reactivate it if necessary.

**Converting CounterACT Devices to High Availability**

This section details how to convert CounterACT devices to a High Availability system. The conversion makes the CounterACT devices suitable for use in a High Availability pair.

This section includes:

- Requirements for High Availability Conversion
- Conversion Procedures

**Requirements for High Availability Conversion**

- Both CounterACT devices must have the same number of Ethernet interfaces.
- The capacity of the Secondary node disk must be at least that of the Primary node disk.
- Both CounterACT devices must be running the same version of CounterACT.

**Conversion Procedures**

**To convert the first CounterACT device:**

1. Perform one of the following:
   - Back up CounterACT system settings and restore in High Availability mode. The restore procedure requires that you reinstall CounterACT. See High Availability Backup and Restore. Refer to the CounterACT Console User Manual. See Additional CounterACT Documentation.
   - Reinstall CounterACT.
   You will lose configuration settings during the reinstallation process, so first record all relevant settings, including interface setup, interface assignment, and IP address details.

Proceed with High Availability configuration of the CounterACT device as detailed in: Identifying Ethernet Ports and Primary Node CounterACT Device Setup.
To convert the second CounterACT device:

1. **For an Appliance**: Connect the redundant (dual) physical cables to the management, monitor and response ports between the Appliance and the switches.

   **For an Enterprise Manager**: Connect the redundant (dual) physical cables to the management port between the Enterprise Manager and the switches.

2. Configure the High Availability settings, as detailed in [Secondary Node CounterACT Device Setup](#).

### High Availability Indicators on the Console

The CounterACT Console indicates the status of your High Availability pair. The relevant icon from the following table appears on the status bar of the Console.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="Icon" /></td>
<td>Indicates that High Availability functionality is up on a CounterACT High Availability pair.</td>
</tr>
<tr>
<td><img src="image" alt="Icon" /></td>
<td>Indicates that High Availability functionality is down on a CounterACT High Availability pair.</td>
</tr>
</tbody>
</table>

A tooltip provides additional information.

<table>
<thead>
<tr>
<th>HA Status</th>
<th>Node</th>
<th>Host</th>
<th>IP</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>UP</td>
<td>Active (shared: ip: 10.38.1.90, injection ip: N/A, IP6 address: null)</td>
<td>ap36phi-2</td>
<td>10.38.1.92</td>
<td>up</td>
</tr>
<tr>
<td></td>
<td>Standby</td>
<td>ap36phi-1</td>
<td>10.38.1.91</td>
<td>up(nodes synchronized)</td>
</tr>
</tbody>
</table>

In addition, the CounterACT Devices pane in the Options window provides information on the High Availability status of each CounterACT device in the enterprise. (To display this information, right-click a column header, select **Add/Remove Columns** and then add the **HA** column.)
The following categories of information are available:

- **N/A**: No High Availability system is installed.
- **UP**: High Availability is installed and running. Both nodes are up and synchronized.
- **Degraded**: A hardware or software failure has occurred to degrade the status of High Availability; check the tooltip for details.
- **Upgrade**: CounterACT is in the process of upgrading.
- **Setup**: CounterACT is in the process of configuring.

**Disaster Recovery for Enterprise Manager**

A CounterACT recovery tool provides a comprehensive recovery system for an Enterprise Manager that is no longer functioning, for example, if it failed as a result of an earthquake or fire. This feature provides complete and continued management of Appliances from a Recovery Enterprise Manager after the crisis.

Not all users have access to this feature. Refer to the section about access to console tools in the *CounterACT Console User Manual* for more information about limiting and allowing user access to this feature. See *Additional CounterACT Documentation*.

**How It Works**

A Recovery Enterprise Manager registered at the Console maintains a lightweight TCP connection with all CounterACT devices in the corporate network. The purpose of this connection is to:

- Verify that the Recovery device can connect to other CounterACT components.
- Transmit primary Enterprise Manager system settings to the Recovery device.

This connection is used to manage network Appliances when the Recovery Enterprise Manager is switched over as the primary Enterprise Manager.

Communication between the Enterprise Manager and the Recovery Enterprise Manager is performed on port 13000/TCP using standard TLS encryption.

You may set up one Recovery Enterprise Manager in your enterprise.
Requirements

- Disaster recovery may only be deployed on networks that have installed CounterACT components running version 6.3.X or above.
- The Recovery Enterprise Manager may not manage CounterACT managed Appliances

Configuring a Disaster Recovery System

To set up and initiate a disaster recovery system:
1. Verify that you installed the Recovery Enterprise Manager at the Data Center.
2. Log in to the Enterprise Manager via the Console.
3. Select **Options** from the **Tools** menu.
4. Select **CounterACT Devices**.
5. In the CounterACT Devices pane, select **Recovery**. The Define Recovery Enterprise Manager dialog box opens.

![Define Recovery Enterprise Manager dialog box]

6. Type the IP address of the Recovery device.

7. The default port should be 13000. This enables network connection. It is not recommended to change this value.

8. Type a password.

9. Select **OK**. The Recovery Enterprise Manager is registered. You are notified that the current configuration and system settings for the Recovery Enterprise Manager (defined during installation at the Data Center) are replaced with the configuration and settings of the current Enterprise Manager. Refer to the section on CounterACT Device Management Overview in the *CounterACT Console User Manual* for a list of these settings. See [Additional CounterACT Documentation](#).

### Activating the Switchover

**To activate the switchover:**

1. Log in to the Recovery Enterprise Manager device via the Console. You are notified that the machine is operating as the Recovery Enterprise Manager, and are asked to confirm the switchover.

2. Select **OK**.

   The devices are switched, i.e., the Recovery device acts as the primary and the original primary acts as the secondary.

   The status of the Enterprise Manager (now the Recovery Enterprise Manager) is disconnected in the case of an actual disaster or for any other reason it is no longer functioning.

### Tracking Recovery Enterprise Manager Activity

Information about recovery activity is automatically shown in the CounterACT Audit Trails log and Events Viewer.
Audit Trails Log

The Audit Trails log indicates:

- When a Recovery Enterprise Manager was defined
- When the switchover is made to the secondary Enterprise Manager

**To access the Audit Trails log:**

1. In the Console Log menu, select **Audit Trails**.
2. Enter a time period and select **OK**. The Audit Trails log opens.

Event Viewer

The Event Viewer indicates:

- When a switchover is made between the primary and secondary
- When the connection status of the Recovery Enterprise Manager changes

**To access the Event Viewer:**

1. Select **Event Viewer** from the Log menu. The Event Viewer opens.

Viewing Recovery Enterprise Manager Connection Status and Details

Recovery Enterprise Manager details are displayed in the CounterACT Devices pane. Refer to the section on viewing information about CounterACT Devices in the *CounterACT Console User Manual* for information about how to work in the pane. See [Additional CounterACT Documentation](#).
Glossary

This glossary provides a brief description of terms related to CounterACT resiliency solutions. References to relevant sections in the User Guide are also included.

### Failover Clustering Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
<th>See also</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failback</td>
<td>Occurs after a failed Appliance reconnects to the Enterprise Manager, and regains control of the endpoints and network devices previously distributed to recipient Appliances.</td>
<td>Failback</td>
</tr>
<tr>
<td>Failed Appliance</td>
<td>An Appliance that has a malfunction. This occurs when the Enterprise Manager fails to connect to the Appliance at the operating system level for a defined period of time. Attempts by the Enterprise Manager to connect to it through port 13000 result in connection time outs. For example, if the Appliance is unplugged or in the event of a natural disaster.</td>
<td>About Failover and Failback</td>
</tr>
<tr>
<td>Failover Assignment</td>
<td>The range of endpoints and network devices transferred to a recipient Appliance after failover.</td>
<td>About Failover and Failback</td>
</tr>
<tr>
<td>Failover Cluster</td>
<td>A group of geographically/logically connected Appliances, such as those at a data center. Appliances within a Failover Cluster that fail, can fail over to other Appliances in the cluster.</td>
<td>Failover Clusters</td>
</tr>
<tr>
<td>Failover Clustering</td>
<td>A resiliency solution implemented with clusters of Appliances. Redundancy is achieved by defining clusters of Appliances that can automatically take over discovery, assessment and control in case of single or multiple Appliance failure within the cluster/s.</td>
<td>About CounterACT Resiliency Solutions</td>
</tr>
<tr>
<td>Failover Excess</td>
<td>Number of endpoints that exceed Appliance capacity after a failover. These endpoints are not fully handled by the Appliance, meaning that not all of their host properties are fully resolved, and they will not match policies that depend on such unresolved properties. As a result, relevant actions will not be applied to these endpoints.</td>
<td>Handling Endpoints that Exceed Capacity</td>
</tr>
<tr>
<td>Failover Scope</td>
<td>A group of one or more Failover Clusters. Allows failover across clusters.</td>
<td>Failover Scope</td>
</tr>
<tr>
<td>Original Assignment</td>
<td>The range of endpoints and network devices originally handled by the recipient Appliance, before failover.</td>
<td>About Failover and Failback</td>
</tr>
</tbody>
</table>
### Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
<th>See also</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recipient Appliance</td>
<td>A functioning Appliance managed by the same Enterprise Manager as the failed Appliance which takes over handling of the range of transferred endpoints and network devices after a failover.</td>
<td>About Failover and Failback</td>
</tr>
</tbody>
</table>

### High Availability Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
<th>See also</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Node</td>
<td>The CounterACT device in a High Availability pair that is currently handling discovery, assessment and control of endpoints.</td>
<td>High Availability Pairing</td>
</tr>
<tr>
<td>High Availability Pairing</td>
<td>A resiliency solution implemented in pairs of two CounterACT devices. Redundancy is achieved by assigning an Active node and a Standby node. The Standby node automatically takes over discovery, assessment and control in case the Active node fails.</td>
<td>About CounterACT Resiliency Solutions</td>
</tr>
<tr>
<td>Primary Node</td>
<td>The node you use to set up high availability. It is initially the Active node.</td>
<td>High Availability Pairing</td>
</tr>
<tr>
<td>Secondary Node</td>
<td>The node that you set up to take over if the primary node fails. It is initially the Standby node.</td>
<td>High Availability Pairing</td>
</tr>
<tr>
<td>Standby Node</td>
<td>The backup CounterACT device in a High Availability pair that takes over if the Active Node fails.</td>
<td>High Availability Pairing</td>
</tr>
</tbody>
</table>

### Disaster Recovery Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
<th>See also</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disaster Recovery for Enterprise Manager</td>
<td>A resiliency solution implemented in pairs of two Enterprise Managers. Redundancy is achieved by defining a Recovery Enterprise Manager that is manually triggered to take over from an Enterprise Manager that is no longer functioning as a result of a disaster.</td>
<td>About CounterACT Resiliency Solutions</td>
</tr>
<tr>
<td>Recovery Enterprise Manager</td>
<td>A backup Enterprise Manager that is manually triggered to take over from an Enterprise Manager that is no longer functioning as a result of a disaster.</td>
<td>About CounterACT Resiliency Solutions</td>
</tr>
</tbody>
</table>
Additional CounterACT Documentation

For more detailed information about the CounterACT features described here or additional CounterACT features and modules, refer to the following resources:

- Documentation Portal
- Customer Support Portal
- CounterACT Console Online Help Tools

Documentation Portal

The ForeScout Documentation Portal is a Web-based library containing information about CounterACT tools, features, functionality and integrations.

To access the Documentation Portal:

2. Use your customer support credentials to log in.
3. Select the CounterACT version you want to discover.

Customer Support Portal

The Customer Support Portal provides links to CounterACT version releases, service packs, plugins and modules as well as related documentation. The portal also provides a variety of How-to Guides, Installation Guides and more.

To access the Customer Support Portal:

2. Select the CounterACT version you want to discover.
CounterACT Console Online Help Tools

Access information directly from the CounterACT Console.

**Console Help Buttons**

Use context sensitive *Help* buttons to quickly access information about the tasks and topics you are working with.

**Console User Manual**

Select **CounterACT Help** from the **Help** menu.

**Plugin Help Files**

1. After the plugin is installed, select **Options** from the **Tools** menu and then select **Plugins**.
2. Select the plugin and then select **Help**.

**Documentation Portal**

Select **Documentation Portal** from the **Help** menu.
Legal Notice

Copyright © ForeScout Technologies, Inc. 2000-2017. All rights reserved. The copyright and proprietary rights in this document belong to ForeScout Technologies, Inc. ("ForeScout"). It is strictly forbidden to copy, duplicate, sell, lend or otherwise use this document in any way, shape or form without the prior written consent of ForeScout. All other trademarks used in this document are the property of their respective owners.

These products are based on software developed by ForeScout. The products described in this document may be protected by one or more of the following U.S. patents: #6,363,489, #8,254,286, #8,590,004, #8,639,800 and #9,027,079 and may be protected by other U.S. patents and foreign patents.

Redistribution and use in source and binary forms are permitted, provided that the above copyright notice and this paragraph are duplicated in all such forms and that any documentation, advertising materials and other materials related to such distribution and use acknowledge that the software was developed by ForeScout.

Unless there is another valid written agreement executed by you and ForeScout that governs the ForeScout products and services:

- If you have purchased any ForeScout products or services, your use of such products or services is subject to your acceptance of the terms set forth at http://www.forescout.com/eula/;
- If you have purchased any ForeScout support service ("ActiveCare"), your use of ActiveCare is subject to your acceptance of the terms set forth at http://www.forescout.com/activecare-maintenance-and-support-policy/;
- If you are evaluating ForeScout’s products, your evaluation is subject to your acceptance of the applicable terms set forth below:
  - If you have requested a General Availability Product, the terms applicable to your use of such product are set forth at: http://www.forescout.com/evaluation-license/.
  - If you have requested a Beta Product, the terms applicable to your use of such product are set forth at: http://www.forescout.com/beta-test-agreement/.
  - If you have purchased any ForeScout Not For Resale licenses, such license is subject to your acceptance of the terms set forth at http://www.forescout.com/nfr-license/.

Send comments and questions about this document to: documentation@forescout.com

2017-08-10 17:53