Table of Contents

Amazon Web Services Plugin Overview .. 6
 About Certification Compliance Mode .. 7
 Use Cases ... 7
 Consolidated Visibility .. 7
 Encryption ... 7
 Dynamic Segmentation of Instances .. 7
 Security Management of EC2 Instances ... 7
 AWS Account ... 8
 IAM Roles and Users .. 8
 Network Awareness .. 8
 Storage Access ... 8
 How It Works .. 8
 Polling ... 8

What to Do .. 9
 Additional Amazon Web Services Documentation .. 9

Requirements ... 9
 Forescout Requirements .. 10
 AWS Requirements ... 10
 Networking Requirements ... 11

Define AWS Users .. 11
 Specify Permissions Using Standard AWS Policies .. 12
 Specify Permissions Using Generic Custom Policies 14
 Specify Minimal Permissions Using Specific Custom Policies 14
 EC2 Instance: Manual Poll ... 14
 EC2 Instance: Take Action on a Resource .. 15
 VPC: Manual Poll .. 15
 VPC: Take Action on a Resource ... 16
 IAM User: Manual Poll ... 16
 IAM User: Take Action on a Resource .. 17
 IAM Role: Manual Poll .. 17
 S3 Buckets: Manual Poll ... 17
 S3 Buckets: Take Action on a Resource ... 18
 Config: Manual Poll .. 18
 Polling of All Relevant Resources ... 19
 Actions on All Resources .. 20
 Deploy Lambda Artifacts on AWS .. 20
 Complete Recommended Minimal JSON Permissions for AWS Plugin 21
 Assume Role Option ... 23
 Access AWS Credentials ... 26
 Enable AWS Config on AWS Account ... 26

Install the Module .. 27

Configure the Module ... 28
Add an AWS Connection ... 28
About Delta Polling ... 37
AWS Pane with Failover Clustering .. 37
Ensure That the Component Is Running ... 38
Test the AWS Connection .. 39
Manually Deploy Delta Polling Artifacts .. 40
Manually Poll AWS Entities .. 40
Edit the AWS Connection ... 41
Remove the AWS Connection ... 42

Configure AWS Policy Templates .. 43
Create a Policy from a Template ... 43
Scope for AWS Asset Classification Template 49
AWS Policy Templates ... 49
EC2 Instances Policy Templates .. 50
IAM Users and Roles Policy Templates ... 50
S3 Buckets Policy Templates ... 51
VPCs Policy Templates ... 51
OTHER Policy Templates ... 51
Update the AMI Whitelist ... 51

Detect Cloud Endpoints – Host Properties 53
AWS Properties .. 53
AWS EC2 Properties ... 54
AWS IAM Role Properties .. 58
AWS IAM User Properties ... 59
AWS S3 Properties ... 61
AWS Service Properties ... 62
AWS VPC Properties ... 63

Manage AWS Cloud Endpoints ... 65
Access AWS IAM Role Inventory .. 65
Access AWS EC2 Inventory .. 66
Access AWS IAM User Inventory ... 67
Access AWS S3 Inventory ... 68
Access AWS VPC Inventory ... 69

Run Policy Actions ... 70
Manually Run AWS Actions on EC2 Instance 70
Apply EC2 Security Groups Action ... 71
Disable EC2 Termination Protection Action 74
Enable EC2 Termination Protection Action 75
Start EC2 Instance Action .. 77
Stop EC2 Instance Action ... 79
Manually Run AWS IAM Actions .. 81
Activate User Access Key Action ... 82
Amazon Web Services Plugin Overview

The Amazon Web Services Plugin is a component of the Forescout Hybrid Cloud Module. See Hybrid Cloud Module Information for details about the module.

The AWS Plugin connects to the Amazon® Web Services (AWS) public cloud environment to retrieve information on Elastic Compute Cloud (EC2) instances and other AWS entities such as Identity and Access Management (IAM) users, Virtual Private Clouds (VPCs), and Amazon Simple Storage Service (S3). The EC2 instances, IAM users, and VPCs follow rules similar to those for other endpoints discovered by the Forescout platform where policies and actions can be defined on those entities. The Forescout platform’s integration with AWS brings the detailed visibility, control, and compliance capabilities of the Forescout platform to EC2 instances and the associated AWS cloud configurations.

The AWS Plugin lets you:

- View endpoints, IAM users, and VPCs in Amazon’s public cloud
- Create and apply Forescout policies across the AWS entities
- Maintain the security and compliance of cloud instances, IAM users, S3s, and VPCs
- Apply security groups to instances, enforce password policies, and perform a range of other policy actions

In this guide, the terms "endpoint“ and "instances“ are used interchangeably.

This plugin assists IT with a number of important challenges when it comes to cloud operations. By integrating the Forescout platform with AWS, you can:

- Have full visibility of your AWS instances and their properties. Since disparate teams may be starting and stopping instances in a public cloud environment, it is important for IT to have a good understanding of what resources are being used in the cloud. Regular checks provide valuable information on how and when AWS cloud resources are used.
- Use the Forescout Asset Inventory to review the distribution of endpoints in the cloud and mitigate them as required. For example, endpoints with out-of-date Amazon Machine Images (AMIs) are quickly identified for remediation.
- Enable/disable Termination Protection for AWS EC2 instances to prevent accidental termination (deletion) of an EC2 instance by establishing a policy in which all compliant and critical EC2 assets have termination protection enabled. See Disable EC2 Termination Protection Action and Enable EC2 Termination Protection Action for details.
- Collect information about the AWS environment across multiple AWS regions and multiple AWS accounts, all from a common deployment. This includes fine-grained details such as the creation of new IAM users, lack of password changes, the presence of Internet Gateways in a VPC, public access for S3, and other AWS operational details.
Discover cloud-based endpoints early, allowing identification and compliance checking of the workload itself. A non-compliant endpoint can be stopped, assigned to a quarantined security group, and/or the AWS account team can be notified. If remediation fails, the endpoint can be fully isolated and stopped to prevent further damage.

About Certification Compliance Mode

Forescout Hybrid Cloud Module: Amazon Web Services (AWS) Plugin supports Certification Compliance mode. For information about this mode, refer to the Forescout Installation Guide. See Additional Forescout Documentation for information on how to access this guide.

Use Cases

This section describes sample use cases supported by this plugin. To understand how this plugin helps you achieve these goals, see How It Works.

 Consolidated Visibility

Integrating with AWS extends the capability of the Forescout platform to see and control instances running in AWS. This allows visibility for campus, data center, and cloud endpoints from the same CounterACT® device (depending on the scale of the environment).

 Encryption

Policy templates are provided to verify that EC2 Elastic Block Storage (EBS) or S3 resources are encrypted. EBS volumes associated with an EC2 instance are collected. An optional action to stop non-compliant EC2 instances is also provided.

 Dynamic Segmentation of Instances

Instances can be segmented or isolated based on their classification and compliance posture. For example, tags can be used to classify and group instances that belong to a particular group, such as testing, development, and production. Additionally, instances can be classified based on their function, such as web, application, or database tier.

 Security Management of EC2 Instances

The AWS Plugin makes it easy for you to detect EC2 instances configured with default or non-compliant security groups. You can then take action to remediate that by applying stricter security policies using well-defined security groups, and making those security groups compliant.
AWS Account
Policy templates are provided to verify that Multi-Factor Authentication (MFA) is enabled for the root user, to continuously monitor if the password has not been changed, and to verify that AWS Config is enabled for an AWS account.

IAM Roles and Users
IAM users, group, and roles and associated properties can be collected. You can use policy templates to continuously monitor for new or modified IAM roles and IAM users, to verify that a password policy is enabled for every user, and to implement an action to enable a password policy for users who do not have a password policy set.

Network Awareness
VPCs configured for an AWS account and the associated properties, such as subnets, Internet gateways, and VPC peers, can be collected. You can use policy templates to verify that no EC2 instance has a public IP address that is an Internet-facing address, to monitor external ELB associated with a VPC, to monitor VPC peering connections, and to allow peering connections between central VPCs and sub-VPCs. An action to allow for termination of an Internet gateway is also provided.

Storage Access
S3 resources associated with an AWS account and the associated properties, such as name, owner, and tags can be collected. You can use policy templates to verify that an S3 bucket does not have public access. For those S3 buckets that have been misconfigured for public access, an action to block public access is provided.

How It Works
This plugin uses well-defined APIs from AWS to provide visibility of AWS EC2 instances, IAM users, S3s, and VPCs.

Once the configuration is completed using an AWS account with the appropriate IAM credentials and permissions, the Forescout platform starts communicating with one or more AWS accounts and retrieves information on EC2 instances running in AWS under that account, as well as the IAM users, S3s, and VPCs. Instance-related properties are collected as Forescout host properties, while other cloud entities (such as IAM users, S3s, and VPCs) are also displayed as logical endpoints in the Forescout platform. The query and collection of AWS entities and associated properties are invoked at configured time intervals.

Polling
To support continual updates of AWS properties, AWS 2.0 combines full polling with an optional delta polling mechanism. This ensures that AWS state changes are recognized in near real-time by the Forescout platform. The full poll gathers all aspects of the AWS environment from AWS APIs. The AWS APIs expose multiple attributes of the entities associated with an AWS account.
Because this data can be quite extensive, the full poll takes place at longer intervals (by default, every 30 minutes). The optional delta polling was added in AWS 2.0 so that EC2 instance state changes are recognized by the Forescout platform in near real-time. The delta poll leverages the functionality exposed by AWS Config, Lambda functions, and CloudWatch logs to quickly capture EC2 state changes as well as modifications to other AWS entities. Since this only looks for delta changes, it takes place over shorter intervals, with a default of one minute.

The Forescout platform requires a range of permissions to enable polling services, including the ability to deploy delta polling into the AWS environment.

See Specify Permissions Using Standard AWS Policies for details about AWS permissions, and Best Practices for Working with the AWS Plugin.

What to Do

To set up your system for integration with AWS environments, perform the following steps:

1. Verify that you have met system requirements. See Requirements.
2. Define AWS Users.
3. Configure the Module.
4. Use the in-depth information reported by the plugin to manage virtual devices:
 - Configure AWS Policy Templates
 - Detect Cloud Endpoints – Host Properties
 - Manage AWS Cloud Endpoints
 - Run Policy Actions

Additional Amazon Web Services Documentation

To use the AWS Plugin, you should have a good understanding of Amazon Web Services and EC2 concepts, functionality, and terminology, and understand how Forescout policies and other basic features work. For more information on installation, configuration, and general guides, refer to the following:

https://aws.amazon.com/documentation/

Requirements

This section describes system requirements, including:

- Forescout Requirements
- AWS Requirements
- Networking Requirements

Forescout Requirements

The plugin requires the following Forescout release and other components:

- Forescout version 8.2.
- Hybrid Cloud Module version 2.1, with the AWS component running.
- If you are using Flexx licensing, ensure that you have a valid Forescout eyeControl (ForeScout CounterACT Control) license, to use enforcement actions provided by the component. Refer to the Forescout Flexx Licensing How-to Guide for more information about managing Flexx licenses.

AWS Requirements

This plugin requires the following AWS components:

- An Amazon Web Services online account.
- You will need one AWS Access Key ID and Secret Key to configure the AWS plugin. These are associated with a User profile on AWS. The access key ID is a unique identifier associated with a secret key. These two keys are used by the AWS plugin to communicate with AWS on behalf of that user.
- If you are using a proxy server with Basic Authentication, you need that proxy's credentials.
- The plugin requires the following AWS services:
 - **Amazon EC2** – Amazon Elastic Compute Cloud (Amazon EC2) is a web service that enables you to launch and manage Linux / UNIX and Windows server instances in Amazon’s public cloud.
 - **Amazon VPC** – Amazon Virtual Private Cloud (VPC) is a web service for provisioning a logically isolated section of AWS Cloud where you can launch AWS resources in a virtual network you define. You control your virtual networking environment, including selection of your own IP address range, creation of subnets, and configuration of route tables and network gateways.
 - **CloudWatch** - CloudWatch is a web service that enables you to monitor and manage various metrics. It also allows the configuration of alarm actions based on the metrics data.

There are two user permissions options that can be used on the Forescout platform:

- Read-only permissions (the Forescout platform will support visibility only)
- Full permissions (the Forescout platform will support both visibility and control)
Networking Requirements

The following must be configured on enterprise firewalls to support communication between the Forescout platform and AWS regional access points.

- Outgoing communication on port 443/TCP must be allowed
- The *.amazonaws.com domain must be reachable with HTTPS
- (Optional) Proxy communication, for example, port 8080 is open

Define AWS Users

To let the Forescout platform query AWS, define a user with the Identity and Access Management (IAM) service. Specify the credentials of this user when you define the Forescout platform’s connections to AWS.

Because the plugin detects and manages a range of AWS entities, the AWS user used on the Forescout platform should have full access across a range of permissions. If there is no need to manage AWS entities through Forescout actions, the AWS user used on the Forescout platform only needs read-only permissions.

The permissions are described in the following sections:

- Specify Permissions Using Standard AWS Policies
- Specify Permissions Using Generic Custom Policies
- Specify Minimal Permissions Using Specific Custom Policies

For all JSON examples in the permissions sections, copy them from the permissions sections and paste them unchanged into the AWS Console for the AWS Account.

In addition, see:

- Assume Role Option
- Access AWS Credentials
- **Enable AWS Config on AWS Account**

Specify Permissions Using Standard AWS Policies

The range of AWS permissions needed by the Forescout platform are listed in this section.

Review [Polling](#) for additional details on the differences.

<table>
<thead>
<tr>
<th>Item</th>
<th>Resources</th>
<th>Permission Needed</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discover resource (FULL POLL)</td>
<td>EC2 Instances, VPC, Peering Connections</td>
<td>AmazonEC2ReadOnlyAccess</td>
<td></td>
</tr>
<tr>
<td>Discover resource (FULL POLL)</td>
<td>IAM Users, IAM Roles</td>
<td>IAMReadOnlyAccess</td>
<td></td>
</tr>
<tr>
<td>Discover resource (FULL POLL)</td>
<td>AWS Config</td>
<td>AWSConfigUserAccess</td>
<td></td>
</tr>
<tr>
<td>Discover resource (FULL POLL)</td>
<td>S3 Buckets</td>
<td>AmazonS3ReadOnlyAccess</td>
<td></td>
</tr>
<tr>
<td>Discover modification to a resource (DELTA POLL)</td>
<td>EC2 Instances</td>
<td>CloudWatchLogsReadOnlyAccess</td>
<td>This is determined by reading CloudWatch logs that are populated by CloudWatch Events. Prerequisite: CloudWatch Event Rules/Lambda functions and CloudWatch Log groups need to be deployed on that account/region.</td>
</tr>
<tr>
<td>Discover modification to a resource (DELTA POLL)</td>
<td>VPC, Peering Connections, IAM Users, IAM Roles</td>
<td>CloudWatchLogsReadOnlyAccess</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>This is determined by reading CloudWatch logs that are populated by AWS Config. Prerequisite: AWS Config needs to be enabled on that account/region, and CloudWatch Event Rules/Lambda functions and CloudWatch Log groups need to be deployed on that account/region.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Perform action on a resource</th>
<th>EC2 Instances, VPC</th>
<th>AmazonEC2FullAccess</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform action on a resource</td>
<td>IAM User</td>
<td>IAMFullAccess</td>
</tr>
<tr>
<td>Perform user access key rotation</td>
<td>IAM User</td>
<td>IAMFullAccess</td>
</tr>
<tr>
<td>Perform action on a resource</td>
<td>S3 Buckets</td>
<td>AmazonS3FullAccess</td>
</tr>
<tr>
<td>Deploy AWS to the Forescout platform’s delta polling update functionality</td>
<td>Per Account/ Per Region</td>
<td>AWSLambdaFullAccess</td>
</tr>
<tr>
<td>This enables the Forescout AWS Plugin to create a Lambda function in AWS so that the Forescout platform’s delta polling has updated information related to EC2 instances.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The permission policies in this table are standard policies present in AWS.

Use the following policies for the Forescout platform to perform the functions listed above:

- AWSConfigUserAccess
- CloudWatchLogsReadOnlyAccess
- AmazonEC2FullAccess
- IAMFullAccess
- AWSLambdaFullAccess
- AmazonS3FullAccess
Specify Permissions Using Generic Custom Policies

Alternatively, you can create a custom policy. The following JSON example allows read access on ELBs and read/write access on all resources on the other seven services listed.

```
{
   "Version": "2012-10-17",
   "Statement": [
      {
         "Effect": "Allow",
         "Action": [
            "cloudwatch:*",
            "config:*",
            "ec2:*",
            "elasticloadbalancing:Describe*",
            "events:*",
            "iam:*",
            "lambda:*",
            "logs:*"
         ],
         "Resource": "*"
      }
   ]
}
```

Specify Minimal Permissions Using Specific Custom Policies

This section contains the permissions for various operations, using the principle of the least or minimal privilege.

The following JSON examples are for the current set of operations that the plugin performs. A later version of the plugin, using newer APIs, will necessitate an update of these permissions.

These various individual permissions can be in common JSON. For additional details, refer to AWS postings on topics such as the following:

EC2 Instance: Manual Poll

```
{
   "Version": "2012-10-17",
   "Statement": [
      {
         "Effect": "Allow",
         "Action": [
            "ec2:*"
         ],
         "Resource": "*"
      }
   ]
}
```
EC2 Instance: Take Action on a Resource

```
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "VisualEditor0",
            "Effect": "Allow",
            "Action": [
                "ec2:StartInstances",
                "ec2:ModifyNetworkInterfaceAttribute",
                "ec2:ModifyInstanceAttribute",
                "ec2:StopInstances"
            ],
            "Resource": "*
        }
    ]
}
```

VPC: Manual Poll

```
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "VisualEditor0",
            "Effect": "Allow",
            "Action": [
                "ec2:DescribeInternetGateways",
                "ec2:DescribeAddresses",
                "ec2:DescribeInstances",
                "ec2:DescribeInstanceAttribute",
                "ec2:DescribeRegions",
                "ec2:DescribeFlowLogs",
                "ec2:DescribeVolumes",
                "ec2:DescribeSubnets",
                "ec2:DescribeSecurityGroups"
            ],
            "Resource": "*
        }
    ]
}
```
"ec2:DescribeVpcs",
"ec2:DescribeVpcPeeringConnections",
"ec2:DescribeNetworkAcls",
"ec2:DescribeRouteTables",
"ec2:DescribeEgressOnlyInternetGateways",
"elasticloadbalancing:DescribeLoadBalancers"
],
"Resource": "*
}
}

VPC: Take Action on a Resource

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": [
 "ec2:DeleteEgressOnlyInternetGateway",
 "ec2:DetachInternetGateway"
],
 "Resource": "*
 }
]
}

IAM User: Manual Poll

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": [
 "iam:ListGroupsForUser",
 "iam:ListAccountAliases",
 "iam:ListUsers",
 "iam:ListGroups",
 "iam:ListMFADevices",
 "iam:GetUser",
 "iam:GetGroup",
 "iam:ListVirtualMFADevices",
 "iam:GenerateCredentialReport",
]
 }
]
}
IAM User: Take Action on a Resource

```
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Sid": "VisualEditor0",
      "Effect": "Allow",
      "Action": [
        "iam:DeleteAccessKey",
        "iam:UpdateAccountPasswordPolicy",
        "iam:UpdateAccessKey",
        "iam:ListAccessKeys",
        "iam:GetCredentialReport"
      ],
      "Resource": "*"
    }
  ]
}
```

IAM Role: Manual Poll

```
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Sid": "VisualEditor0",
      "Effect": "Allow",
      "Action": "iam:ListRoles",
      "Resource": "*"
    }
  ]
}
```

S3 Buckets: Manual Poll

```
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Sid": "VisualEditor0",
      "Effect": "Allow",
      "Action": "s3:ListBucket",
      "Resource": "*"
    }
  ]
}
```
S3 Buckets: Take Action on a Resource

```json
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "VisualEditor0",
            "Effect": "Allow",
            "Action": ["s3:PutBucketAccessBlock"],
            "Resource": "*"
        }
    ]
}
```

Config: Manual Poll

```json
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "VisualEditor0",
            "Effect": "Allow",
            "Action": ["config:DescribeDeliveryChannels"],
            "Resource": "*"
        }
    ]
}
```
Polling of All Relevant Resources

```json
{
   "Version": "2012-10-17",
   "Statement": [
      {
         "Sid": "VisualEditor0",
         "Effect": "Allow",
         "Action": [
            "ec2:DescribeImages",
            "ec2:DescribeAddresses",
            "ec2:DescribeInstances",
            "ec2:DescribeInstanceAttribute",
            "ec2:DescribeRegions",
            "ec2:DescribeFlowLogs",
            "ec2:DescribeVolumes",
            "ec2:DescribeSubnets",
            "ec2:DescribeSecurityGroups",
            "ec2:DescribeInternetGateways",
            "ec2:DescribeVpcs",
            "ec2:DescribeVpcPeeringConnections",
            "ec2:DescribeNetworkAcls",
            "ec2:DescribeRouteTables",
            "ec2:DescribeEgressOnlyInternetGateways",
            "elasticloadbalancing:DescribeLoadBalancers",
            "iam:ListGroupsForUser",
            "iam:ListAccountAliases",
            "iam:ListUsers",
            "iam:ListGroups",
            "iam:ListMFADevices",
            "iam:GetUser",
            "iam:GetGroup",
            "iam:GenerateCredentialReport",
            "iam:GetCredentialReport",
            "iam:ListVirtualMFADevices",
            "iam:ListRoles",
            "s3:ListAllMyBuckets",
            "s3:ListBucket",
            "s3:GetBucketAcl",
            "s3:GetBucketLocation",
            "s3:GetBucketPublicAccessBlock",
            "s3:GetBucketTagging",
            "s3:GetEncryptionConfiguration",
            "s3:GetBucketObjectLockConfiguration",
            "config:DescribeDeliveryChannels",
            "logs:FilterLogEvents",
            "logs:DescribeLogStreams"
         ]
      }
   ]
}
```
"logs:GetLogEvents",
],
"Resource": "*"
}
}

Actions on All Resources
{
"Version": "2012-10-17",
"Statement": [
{
"Sid": "VisualEditor0",
"Effect": "Allow",
"Action": [
"ec2:StartInstances",
"ec2:ModifyNetworkInterfaceAttribute",
"ec2:ModifyInstanceAttribute",
"ec2:StopInstances",
"iam:DeleteAccessKey",
"iam:UpdateAccountPasswordPolicy",
"iam:UpdateAccessKey",
"iam:ListAccessKeys",
"iam:CreateAccessKey",
"ec2:DeleteEgressOnlyInternetGateway",
"ec2:DetachInternetGateway",
"s3:PutBucketAccessBlock",
],
"Resource": "*"
}
]

Deploy Lambda Artifacts on AWS
{
"Version": "2012-10-17",
"Statement": [
{
"Sid": "VisualEditor0",
"Effect": "Allow",
"Action": [
"lambda:GetFunction",
"lambda:CreateFunction",
"lambda:AddPermission",
"iam:GetRole",
]
Complete Recommended Minimal JSON Permissions for AWS Plugin

```json
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "VisualEditor0",
            "Effect": "Allow",
            "Action": [
                "config:DescribeDeliveryChannels",
                "ec2:DescribeImages",
                "ec2:DescribeAddresses",
                "ec2:DescribeInstances",
                "ec2:DescribeInstanceAttribute",
                "ec2:DescribeRegions",
                "ec2:DescribeFlowLogs",
                "ec2:DescribeVolumes",
                "ec2:DescribeSubnets",
                "ec2:DescribeSecurityGroups",
                "ec2:DescribeInternetGateways",
                "ec2:DescribeVpcs",
                "ec2:DescribeVpcPeeringConnections",
                "ec2:DescribeNetworkAcls",
                "ec2:DescribeRouteTables",
                "ec2:DescribeEgressOnlyInternetGateways",
                "ec2:StartInstances",
                "ec2:ModifyNetworkInterfaceAttribute",
                "ec2:ModifyInstanceAttribute",
                "ec2:StopInstances",
                "ec2:DeleteEgressOnlyInternetGateway",
                "ec2:DetachInternetGateway"
            ],
            "Resource": "*"
        }
    ]
}
```
"elasticloadbalancing:DescribeLoadBalancers",
"events:PutRule",
"events:PutTargets",
"events:DescribeRule",
"iam:ListGroupsForUser",
"iam:ListAccountAliases",
"iam:ListUsers",
"iam:ListGroup",
"iam:ListMFADevices",
"iam:GetUser",
"iam:GetGroup",
"iam:GenerateCredentialReport",
"iam:GetCredentialReport",
"iam:ListVirtualMFADevices",
"iam:ListRoles",
"iam:DeleteAccessKey",
"iam:UpdateAccountPasswordPolicy",
"iam:UpdateAccessKey",
"iam:ListAccessKeys",
"iam:CreateAccessKey",
"iam:GetRole",
"iam:CreateRole",
"iam:PassRole",
"lambda:GetFunction",
"lambda:CreateFunction",
"lambda:AddPermission",
"logs:FilterLogEvents",
"logs:DescribeLogGroups",
"logs:PutMetricFilter",
"logs:CreateLogGroup",
"logs:DescribeLogStreams",
"logs:GetLogEvents",
"s3:PutBucketAccessBlock",
"s3:ListAllMyBuckets",
"s3:ListBucket",
"s3:GetBucketAcl",
"s3:GetBucketLocation",
"s3:GetBucketPublicAccessBlock",
"s3:GetBucketTagging",
"s3:GetEncryptionConfiguration",
"s3:GetBucketObjectLockConfiguration"
Assume Role Option

The Assume Role option is supported when integrating the Forescout platform with AWS. The Assume Role option is an alternative approach to defining the permissions at the individual account level as described above. With Assume Role, all the necessary permissions are added under AWS Role including the ability to reach into other AWS accounts, if desired.

- The Assume Role token defaults to one hour and has no ramifications on poll cycles.

For more information on Assume Role, refer to:

To create an assume role and user:

1. Go to IAM > Role, select Create role, and then select the service type for the role, such as EC2.

2. Select Next, then select the desired policies, such as AllowForescoutExtras.

3. Select Next to optionally add tags.
4. Select **Next**, enter a name for the role, then select **Create role**.

5. Configure users through the trust relationship under the Role configuration panel.
6. To add a user, edit the trust relationship.

7. Go to **IAM > User >** the user to be configured > **Permissions > Add permissions** to configure the following policy for a specific IAM user to be trusted by the role. (Sometimes, this may be the only policy for that user.)

> Selecting Assume Role and Key Rotation together is currently not supported.
Access AWS Credentials

To access your AWS credentials:

1. Go to https://console.aws.amazon.com and log in using your username and password.

2. Select Services.

4. In the IAM Resources section, select the Users link. The Users page opens.

5. Each user has a unique Access Key ID. Select a user. The Users: [Name of User] page opens.

6. Select the Security credentials tab. The sign-in credentials are displayed.

7. In the Access Keys section, the AWS Access key ID is displayed. Access Keys let you control the credentials you will need to configure in the Forescout AWS Plugin. Copy the Access key ID and locate the corresponding Secret Access Key.

Enable AWS Config on AWS Account

AWS Config needs to be manually enabled on your AWS account, per region. For global entities, such as IAM, the AWS Config recording only occurs on a selected “home” region.

The settings in the following example record all resources in the region and monitor global resources. You also need to configure an Amazon S3 bucket and an AWS Config role, however the AWS Plugin only uses CloudWatch logs and does not rely on the S3 buckets for information.
Alternatively, you can select resources as needed. The AWS Plugin uses information from the following resources.

Install the Module

To install the module:

1. Navigate to one of the following Forescout download portals, depending on the licensing mode your deployment is using:
 - Product Updates Portal - *Per-Appliance Licensing Mode*
 - Customer Portal, Downloads Page - *Flexx Licensing Mode*
To identify your licensing mode, select Help > About ForeScout from the Console.

2. Download the module .fpi file.
3. Save the file to the machine where the Console is installed.
4. Log into the Console and select Options from the Tools menu.
5. Select Modules. The Modules pane opens.
6. Select Install. The Open dialog box opens.
7. Browse to and select the saved module .fpi file.
8. Select Install. The Installation screen opens.
9. Select I agree to the License Agreement to confirm that you have read and agree to the terms of the License Agreement and select Install. The installation cannot proceed unless you agree to the license agreement.

- The installation begins immediately after selecting Install and cannot be interrupted or canceled.
- In modules that contain more than one component, the installation proceeds automatically one component at a time.

10. When the installation completes, select Close to close the window. The installed module is displayed in the Modules pane.

- Some components are not automatically started following installation.

Configure the Module

Configure the module to ensure that the Forescout platform can communicate with AWS API access points. For details, see:

- Add an AWS Connection
- AWS Pane with Failover Clustering

Before you configure the AWS Plugin, verify that the corresponding Requirements are met. Removing a configured connection stops endpoint discovery and property learning of virtual machines unique to the connection, but any actions remain enabled.

Add an AWS Connection

You can add an AWS connection from the Forescout platform. Verify that you have access to your AWS credentials before adding a connection. The Access Key ID corresponds to your AWS EC2 account on the AWS online portal.

To add an AWS connection:

1. In the Console, select Options from the Tools menu.
2. In the Options pane, select **AWS**.

3. Select **Add**. If you have not set up your AWS credentials, see [Access AWS Credentials](#).
4. Enter values for the following parameters, which are used to specify login credentials for AWS.

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Key ID</td>
<td>Enter the credentials of the IAM user you want this connection to use when it connects to AWS. The Access Key ID and the Secret Access Key were provided when you created a user profile in your AWS account. The username of the IAM user is not required, but the credentials are used in the Access Key and Secret Access Key for authentication.</td>
</tr>
<tr>
<td>Secret Access Key</td>
<td>Re-enter the Secret Access Key to verify it.</td>
</tr>
<tr>
<td>Verify Secret Access Key</td>
<td>Select this option to enable the Assume Role, which adds a security token to the Access Key ID and Secret Access Key for authentication. The Assume Role provides the IAM user temporary security credentials that enable access to certain AWS resources in your account. The account can be either controlled by you or by a third party. Through the AWS console, create a role that has access to the resources. See Assume Role Option. After selecting this option, enter the Assume Role ARN. Note that you cannot select both Enable Assume Role and Enable rotation of the access key.</td>
</tr>
</tbody>
</table>
| **Assume Role ARN** | Enter the Amazon Resource Name (ARN) of the Assume Role from the AWS console, for example,
arn:aws:iam::123456789012:role/Test |
|---------------------|--|
| **Enable rotation of the access key** | Select this option to enable rotation of the access key when you do not want the Access Key ID and Secret Access Key to be hard-coded. Rotating access keys provides a higher level of security between the Forescout platform and AWS.
Key rotation requires IAMFullAccess permission.
For the same access key, you cannot enable key rotation on more than one configuration entry. For example, if you have two accounts configured with the same access key, an error message is displayed if you try to enable key rotation on both.
Key rotation in AWS will fail if there is more than one key already present in the associated AWS account.
After selecting this option, enter a **Key rotation Interval (days)**.
Note that you cannot select both **Enable Assume Role** and **Enable rotation of the access key**. |
| **Key rotation Interval (days)** | Enter the number of days to specify the frequency of the key rotation. The values are from 30 to 365 days. The default is 90 days. |
| **Environment** | From the drop-down menu, select AWS Standard Account, AWS US Gov Cloud Account, or AWS China Account.
The access key credentials differ for these accounts. |
| **Connecting CounterACT Device** | Indicates the CounterACT device that connects to AWS using these connection settings. The device specified in this field is the only CounterACT device that communicates with AWS.
In the drop-down list, select an IP Address listed in the Appliances folder. Only one IAM user is allowed for a connecting device. |
| **Account Nickname** | (Optional) Add a label or nickname to distinguish this connection from other AWS connections. |

5. Select **Next**.
(Optional) Enter the proxy server information. If a proxy server with Basic Authentication is used, the proxy credentials are required (see [AWS Requirements](#)).

<table>
<thead>
<tr>
<th>Use Proxy Server</th>
<th>If your environment routes internet communications through proxy servers, select this option.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proxy Server Host</td>
<td>Enter the IPv4 address or the domain name of the proxy server.</td>
</tr>
<tr>
<td>Proxy Server Port</td>
<td>Select the port number of the proxy server.</td>
</tr>
<tr>
<td>Proxy Server Username</td>
<td>(Optional) If Basic Authentication is used, enter the proxy server's username.</td>
</tr>
<tr>
<td>Proxy Server Password</td>
<td>(Optional) If Basic Authentication is used, enter the proxy server’s password.</td>
</tr>
<tr>
<td>Verify Password</td>
<td>Re-enter the proxy server’s password.</td>
</tr>
</tbody>
</table>

6. Select **Next**. The list of available regions is retrieved for the connected account. The following successful results are for a user who has all Discovery-related permissions (AmazonEC2ReadOnlyAccess, IAMReadOnlyAccess, and AWSConfigUserAccess). Errors are displayed if the user does not have all the required permissions.
If key rotation is enabled, a line will be displayed near the top of the **Verifying AWS account configuration** dialog box stating the access key for which key rotation is enabled.

7. Select **OK**.
8. Select one or more regions.

 The Regions pane is automatically populated:
 - If Amazon adds a new region, it will be displayed.
 - If you add a connection using AWS US Gov Cloud Account credentials, us-gov regions, such as us-gov-west-1, will be displayed.
 - If you add a connection using AWS China Account credentials, cn regions, such as cn-north-1, will be displayed.

9. Select **Next**.
10. Select **Close**.

11. Set the communication controls between the Forescout platform and AWS.

| Query Interval (seconds) | Specify how frequently the plugin should query AWS for a full poll. The default is 1800 seconds (30 minutes). The range is from 60 seconds (one minute) to 86400 seconds (24 hours). |
Delta Poll of AWS Entities

Select this option to enable delta polling of AWS entities (EC2 instances, IAM users and roles, S3 buckets, VPCs, and more). This option enables AWS Lambda functions and the CloudWatch monitoring service. See About Delta Polling for details.

After selecting this option, enter the Delta Poll Interval (seconds).

Delta Poll interval (seconds)

Specify the delta polling interval for which the AWS Plugin reaches out to CloudWatch log streams to get the most recent logs.

The default is 60 seconds (one minute). The range is from 60 seconds (one minute) to 86400 seconds (24 hours).

12. Select Finish. The new account is displayed in the AWS pane.

13. If delta polling is enabled, you are prompted for confirmation. Select OK to continue.

When delta polling is enabled, AWS Lambda functions, and CloudWatch Event Rules are created for each of the selected AWS regions. See About Delta Polling.

14. (Recommended) Select Test to test the connection.

Information is displayed in the Testing AWS Connection dialog box, but a full poll is not yet successfully completed. See Test the AWS Connection.

You cannot trigger a manual poll until after you select Apply and save the configuration.

15. In the AWS pane, select Apply and confirm the changes.

Allow 1-2 minutes for the changes to take effect.
About Delta Polling

The delta polling mechanism recognizes state changes to the EC2 instance, such as a change from the Running to the Stopped state. Many attributes (other than EC2 instance state) can also change.

Amazon exposes these attributes through AWS Config, which is a recording of any configuration changes on the AWS account. The AWS Plugin leverages the functionality exposed by AWS Config to identify changes to EC2 properties, IAM users, IAM groups and IAM roles, VPC properties, and S3 properties.

Delta polling works as follows:

1. AWS Config records changes to EC2/IAM/VPC/S3 and sends them to CloudWatch and CloudTrail.
2. CloudWatch and CloudTrail receive the changes and forward them to the Lambda function.
3. The Lambda function logs the changes to CloudWatch and CloudTrail.
4. The delta polling mechanism reads the CloudWatch and CloudTrail logs at every delta polling interval.

Note the following:

- Changes to EC2 state information are reflected in the Forescout platform in approximately a minute. This delay is due to delta polling.
- Changes to EC2/IAM/VPC/S3 configuration propagated through AWS Config are reflected in the Forescout platform in approximately 10 to 15 minutes. This delay is due to AWS Config.

The polling response time for CloudWatch has a default of 10 minutes. CloudTrail has a default of 15 minutes.

AWS Pane with Failover Clustering

When a connecting CounterACT Appliance is part of a failover cluster and the Appliance fails, it automatically falls back to another available Appliance in the cluster.

Refer to the Forescout Resiliency and Recovery Solutions User Guide for details on installing and configuring Failover Clustering. See Additional Forescout Documentation for information on how to access this guide.

Failover Clustering supports continuous management of EC2 instances, but does not currently support non-IP/MAC AWS entities, such as IAM users or VPCs.

To work with Failover Clustering, ensure that you have the relevant product license that supports the feature. The type of license required depends on which licensing mode your deployment is using. Refer to the Forescout Resiliency and Recovery Solutions User Guide for more information.
To view Failover Clustering in the AWS pane:

1. In the Console, select **Options** from the **Tools** menu.
2. In the Options pane, select **AWS**.

The status of Failover Clustering is displayed in green when a configured CounterACT Appliance is up and running.

The status of Failover Clustering is displayed in green and orange when a configured CounterACT Appliance fails and another CounterACT Appliance becomes active.

When the original configured CounterACT Appliance returns, it becomes active.

Ensure That the Component Is Running

After installing the component (and configuring it, if necessary), ensure that it is running.

To verify:

1. Select **Tools > Options > Modules**.
2. Navigate to the component and hover over the name to view a tooltip indicating if it is running on Forescout devices in your deployment. In addition, next to the component name, you will see one of the following icons:

 - ![Stop](image) - The component is stopped on all Forescout devices.
 - ![Stop](image) - The component is stopped on some Forescout devices.
 - ![Running](image) - The component is running on all Forescout devices.

3. If the component is not running, select **Start**, and then select the relevant Forescout devices.
4. Select **OK**.
Test the AWS Connection

Using the configured settings, the Forescout platform attempts to connect to AWS and retrieve sample data associated with the IAM user in the AWS regions specified in the connection. The test functionality also indicates whether CloudWatch Event Rules have been configured to receive EC2 state change notifications and receive AWS Config notifications.

To test the AWS connection:

1. In the AWS pane, select an AWS connection and select Test.

 The following successful results are for a user who has all Discovery-related permissions (AmazonEC2ReadOnlyAccess, IAMReadOnlyAccess, and AWSConfigUserAccess). Errors are displayed if the user does not have all the necessary permissions.

2. View the results, and then select Close.

 If key rotation is enabled, a line will be displayed near the top of the Testing AWS configuration dialog box warning that the user must have the appropriate permissions.

 It is recommended you test the AWS connection after the AWS Plugin has been running for 1-2 minutes.
Manually Deploy Delta Polling Artifacts

You can deploy delta polling artifacts to see if any specific region does not have Lambda functions, CloudWatch Event Rules, or CloudWatch Logs configured. The deploy mechanism deploys the CloudWatch Event Rule that is needed to consume events from AWS Config. Errors are displayed if the user does not have all the required permissions.

To manually deploy delta polling artifacts on an AWS account:

1. In the AWS pane, select an AWS connection and select **Deploy**. The following successful results are for a user who has all the required permissions.

2. View the results, and then select **Close**.

Manually Poll AWS Entities

You can manually poll AWS entities (EC2 instances, IAM users and roles, S3 buckets, VPCs, and more), when you do not want to wait for the scheduled poll. The full poll collects information from AWS, such as EC2 instance-related data. The poll results depend on the access permissions of the user. If the user does not have read permissions to EC2 or IAM, an error is displayed.

To manually poll AWS entities for an account:

1. In the AWS pane, select an AWS connection and select **Poll**.
2. View the results, and then select **Close**.

The following successful results are for a user who has both AmazonEC2ReadOnlyAccess and IAMReadOnlyAccess permissions. There are no errors even though this user does not have AWSConfigUserAccess permissions. However, in this case, no AWS Config-related information is displayed.
The following failed poll is for a user who does not have all the permissions.

3. Select **Close**.

Edit the AWS Connection

You can edit an AWS connection.

To edit an AWS connection:

1. In the AWS pane, select an AWS connection and select **Edit**.
2. Edit the connection parameters in the General, Proxy Server Definition, Regions, and Advanced tabs, and select **OK**.

Remove the AWS Connection

You can remove a connection. Any actions already launched remain active and are not undone.

To remove an AWS connection:

1. In the AWS pane, select an AWS connection and select **Remove**.
2. When prompted for confirmation, select **OK**.
Configure AWS Policy Templates

The AWS Plugin provides additional endpoint properties and actions that are useful for the management of AWS virtual devices. Use these properties and actions to construct customized policies for detecting, managing, and remediating endpoints based on the AWS integration.

Before applying the templates, it is recommended that you have a basic understanding of Forescout policies. For more information about creating custom policies, refer to the Policy Management and Policy Templates chapters in the Forescout Administration Guide. See Additional Forescout Documentation for information on how to access this guide.

Create a Policy from a Template

You can use a policy template to create an AWS policy.

To create an AWS policy:

1. Log in to the Console and select Policy.

![Policy Wizard Image]

3. Select Templates and expand the AWS folder.
4. The AWS policy templates are organized in folders. Expand the AWS folders to view the policy templates for EC2 Instances, IAM Users and Roles, S3s, VPCs, and OTHER, as well as the policy template for AWS Asset Classification.

5. For details on the folder structure and the available templates, see AWS Policy Templates.

6. Select an AWS policy template and then select Next.
7. Enter the name of the new policy. Optionally, add a description. Select Next.

8. AWS policy templates for non-EC2 instances do not need an IP segment to be explicitly selected. Hence, **Hosts without a known IP address** has been preselected in the Scope pane. For EC2 instances, select Add. Otherwise, go to Step 12.

9. Use the IP Address Range dialog box to define which endpoints are inspected.
The following options are available:

- **All IPs**: Include all IP addresses in the Internal Network.
- **Segment**: Select a previously defined segment of the network. To specify multiple segments, select **OK** or **Cancel** to close this dialog box, and select **Segments** from the Scope pane.
- **Unknown IP addresses**: Apply the policy to endpoints whose IP addresses are not known. Endpoint detection is based on the endpoint MAC address.

10. In the IP Address Range dialog box, select **OK**.
11. To add other IP address ranges, select **Add** in the Scope pane. For a special case, see **Scope for AWS Asset Classification Template**.
12. In the Scope pane, select **Next**.

![Policy Sub-Rule New Rule Dialog Box](image)

14. Enter the name of the new rule. Optionally, add a description.

15. **Select OK.**
16. To edit the policy name or condition, select **Edit** in the Name section.

17. To add a condition, select **Add** in the Condition section. See [Detect Cloud Endpoints – Host Properties](#).

18. To add an action, select **Add** in the Actions section. See [Run Policy Actions](#).

19. Select **OK**.

20. In the Sub-Rules pane of the Policy Wizard, select **Finish**.

21. In the Policy Manager, select **Apply**.
Scope for AWS Asset Classification Template

Some AWS entities do not have IP addresses. In order to classify all AWS entities with the AWS Asset Classification policy template, you must select both **Unknown IP addresses** and **All IPs** in the IP Address Range dialog box. To select both, you need to select **Add** in the Scope pane. This configuration is shown in the following figure.

AWS Policy Templates

The AWS policy templates are organized in the following folders:

<table>
<thead>
<tr>
<th>Folder</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC2 Instances</td>
<td>Use the templates in this folder to create policies on EC2 instances. There is a sub-folder called EC2 Event. Use the templates in this folder to create policies on EC2 instance events.</td>
</tr>
<tr>
<td>IAM Users and Roles</td>
<td>Use the templates in this folder to create policies on IAM users and roles. There is a sub-folder called IAM Event. Use the templates in this folder to create policies on IAM User and role events.</td>
</tr>
<tr>
<td>S3 Buckets</td>
<td>Use the templates in this folder to create policies on S3 buckets.</td>
</tr>
</tbody>
</table>
VPCs
Use the templates in this folder to create policies on VPCs. There is a sub-folder called VPC Event. Use the templates in this folder to create policies on VPC events.

OTHER
Use the templates in this folder to create policies on other AWS resources.

AWS Asset Classification
Use this template to classify all AWS resources.

EC2 Instances Policy Templates

The following EC2 Instances policy templates are available:

<table>
<thead>
<tr>
<th>Template</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC2 Event > AWS EC2 Instance State</td>
<td>Identify EC2 instances with a specific state.</td>
</tr>
<tr>
<td>AWS EC2 Encryption Compliance</td>
<td>Identify whether EC2 instances are encryption-compliant.</td>
</tr>
<tr>
<td>AWS EC2 Instance by Platform</td>
<td>Classify EC2 instances by platform. The only platforms are Windows or Non-Windows.</td>
</tr>
<tr>
<td>AWS EC2 Instance by Region</td>
<td>Classify EC2 instances by region.</td>
</tr>
<tr>
<td>AWS EC2 Instance by Type/Size</td>
<td>Classify EC2 instances by type/size.</td>
</tr>
<tr>
<td>AWS EC2 Instance Public IP</td>
<td>Identify EC2 instances with a public IP address.</td>
</tr>
<tr>
<td>AWS EC2 Instance Termination Protection</td>
<td>Identify EC2 instances that have Termination Protection enabled.</td>
</tr>
</tbody>
</table>

IAM Users and Roles Policy Templates

The following IAM Users and Roles policy templates are available:

<table>
<thead>
<tr>
<th>Template</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAM Event > AWS IAM Role Created</td>
<td>Identify when an IAM role is created.</td>
</tr>
<tr>
<td>IAM Event > AWS IAM User Created</td>
<td>Identify when an IAM user is created.</td>
</tr>
<tr>
<td>AWS IAM Root Password</td>
<td>Identify whether the root account is compliant with the password policy.</td>
</tr>
<tr>
<td>AWS IAM User Console Access</td>
<td>Identify whether the IAM user has console access enabled.</td>
</tr>
<tr>
<td>AWS IAM User Console Password</td>
<td>Identify whether the IAM user’s console access is compliant.</td>
</tr>
<tr>
<td>AWS IAM User MFA</td>
<td>Identify whether the IAM user is MFA-compliant.</td>
</tr>
</tbody>
</table>
S3 Buckets Policy Templates
The following S3 buckets policy templates are available:

<table>
<thead>
<tr>
<th>Policy Template</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWS S3 Access Type</td>
<td>Identify S3 buckets with public access allowed.</td>
</tr>
<tr>
<td>AWS S3 Encrypted</td>
<td>Identify S3 buckets that are encrypted.</td>
</tr>
</tbody>
</table>

VPCs Policy Templates
The following VPCs policy templates are available:

<table>
<thead>
<tr>
<th>Policy Template</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPC Event > AWS VPC State</td>
<td>Identify when a VPC is created or deleted.</td>
</tr>
<tr>
<td>AWS VPC ELB</td>
<td>Identify VPCs with ELB configured.</td>
</tr>
<tr>
<td>AWS VPC Flowlog</td>
<td>Identify VPCs with Flowlogs configured.</td>
</tr>
<tr>
<td>AWS VPC Internet Gateway Compliance</td>
<td>Identify whether VPCs are compliant with respect to Internet Gateways.</td>
</tr>
<tr>
<td>AWS VPC Peering Status</td>
<td>Identify VPCs with peering connections.</td>
</tr>
</tbody>
</table>

OTHER Policy Templates
The following OTHER policy template is available:

<table>
<thead>
<tr>
<th>Policy Template</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWS Config Compliance</td>
<td>Identify whether your account/region is AWS Config-compliant.</td>
</tr>
</tbody>
</table>

Update the AMI Whitelist
The AMI Whitelist lists the “good” Amazon Machine Images (AMIs).

To update the AMI whitelist:

1. Log in to the Console and select **Options** from the **Tools** menu.

 ![Options menu](image)

2. In the left pane, select **Lists**. The AMIs are listed in the Lists pane.
3. Select an item and select **Edit**.

4. To add values to the list, select **Add**.

5. Paste the AMI Name from the AWS online portal into the field, for example, `ami-b70554c8`, and select **OK**.

6. Copy and paste additional AMIs from the AWS online portal into the Edit List dialog box (if applicable).

7. Select **OK** in the Edit List dialog box.

8. Select **Apply** in the Lists pane.
Detect Cloud Endpoints – Host Properties

There are many AWS-specific host properties available. These properties are displayed in the Condition dialog box, which is accessed through the policy templates. In the Console, some properties are also visible in the profile section within the Home tab.

Host properties are organized into the following groups:

- **AWS Properties**
- **AWS EC2 Properties**
- **AWS IAM Role Properties**
- **AWS IAM User Properties**
- **AWS S3 Properties**
- **AWS Service Properties**
- **AWS VPC Properties**

For more information about setting conditions, refer to the *Forescout Administration Guide*. See *Additional Forescout Documentation* for information on how to access this guide.

AWS Properties

The AWS properties are common properties, such as Account Name, that are added to EC2, IAM, or VPC hosts.

To access the AWS properties:

1. When configuring a policy, select **Add** in the Condition section of the Sub-Rule dialog box.
2. Expand the AWS folder.
The following properties are available:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWS Account Name</td>
<td>Indicates the nickname of the AWS account to which this host corresponds, as internally configured in the Console.</td>
</tr>
<tr>
<td>AWS Account Region</td>
<td>Indicates the region of the AWS account.</td>
</tr>
<tr>
<td>AWS Resource State</td>
<td>Indicates the most recently reported state of the AWS Resource, such as Active or Deleted.</td>
</tr>
<tr>
<td>AWS Resource Tag</td>
<td>Indicates an internal tag to differentiate between EC2/IAM and VPC hosts.</td>
</tr>
</tbody>
</table>

AWS EC2 Properties

This section describes the AWS EC2 properties for EC2 instances over and above an instance’s MAC and IP addresses.

If an EC2 instance has been configured with an IPv6 address, it can be displayed in the All Hosts pane.

To access the AWS EC2 properties:

1. When configuring a policy, select **Add** in the Condition section of the Sub-Rule dialog box.
2. Expand the AWS EC2 folder.
The following properties are available:

| **EC2 Attached Block Devices** | Indicates the Elastic Block Storage (EBS) volumes attached to this EC2 instance. The following sub-properties are available:
 - Is root device: Is the Attached Block Device a root device?
 - Device ID: The Device ID of the Attached Block Device.
 - Encrypted: Is the Attached Block Device encrypted?
 - KMS Key ID: The Key Management Server (KMS) key ID used to perform encryption.
 - Size (GB): The size of the Attached Block Device.
 - Device Type: The device type of the Attached Block Device. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EC2 AMI Launch Index</td>
<td>Indicates the order in which the EC2 instance was launched. The first or only instance has an index value of 0.</td>
</tr>
<tr>
<td>EC2 Dedicated Tenancy</td>
<td>Indicates that the instance runs on single-tenant, dedicated hardware.</td>
</tr>
</tbody>
</table>
| **EC2 Elastic Network Interfaces** | Indicates the Elastic Network Interfaces (ENIs) of the EC2 instance. The following sub-properties are available:
- **Local Interface Name:** The local interface name, such as eth0 or eth1.
- **Private IP Address:** The private IP address of the ENI.
- **Private DNS:** The private DNS of the ENI.
- **MAC Address:** The MAC address of the ENI.
- **Elastic IP Address:** The elastic IP address of the ENI.
- **Source/destination check:** The source/destination check of the ENI.
- **Description:** The description of the ENI.
- **Security Group:** The security group of the ENI. |
| **EC2 IAM Role** | Indicates the Identity and Access Management (IAM) role associated with this EC2 instance. |
| **EC2 Instance ID** | Indicates the EC2 instance ID of the endpoint. |
| **EC2 Internet Gateway Information** | Provides information about the Internet gateways on this EC2 instance's VPC. The following sub-properties are available:
- **Internet Gateway ID:** The stable and unique string identifying the Internet Gateway.
- **Internet Gate Name:** The friendly name identifying the Internet Gateway.
- **Egress Gateway:** The Internet Gateway as either egress or ingress. |
| **EC2 Kernel ID** | Indicates the operating system kernel associated with the AMI. |
| **EC2 Key Pair Name** | Indicates the key pair required for logging in to the instance securely. |
| **EC2 Launch Details** | Indicates the launch details of the EC2 instance. The following sub-properties are available:
- **AMI ID:** The full Amazon Image ID used to create the EC2 instance.
- **AMI Name:** The Amazon Image name used to create the EC2 instance.
- **Launch Time:** The time when this EC2 instance was launched. |
| **EC2 Lifecycle** | Indicates whether this is a Normal or Spot EC2 instance. A Normal instance is usually launched and terminated at a user's request. A Spot Instance is launched when the bid price is higher than the Spot Price. If the Spot Price goes over the bid price, it may be terminated. |
| **EC2 Location** | Provides location information of the AWS EC2 endpoint. The following sub-properties are available:
- **Location:** The region in which the AWS endpoint is located, such as us-west-1.
- **Availability Zone:** The availability zone of the endpoint, such as us-west-1b. |
<table>
<thead>
<tr>
<th>EC2 Last State Transition Reason</th>
<th>Indicates the reason for the last change of EC2 instance state. For example, if the last instance state was Terminated, the reason might be: User initiated shutdown.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC2 Instance Name</td>
<td>Indicates the EC2 instance name of the endpoint.</td>
</tr>
<tr>
<td>EC2 AMI Owner</td>
<td>Indicates the AWS account number belonging to the owner of the Amazon Machine Image (AMI) used for this EC2 instance.</td>
</tr>
<tr>
<td>EC2 Placement Group</td>
<td>Indicates the cluster group to which this instance belongs, if it is a cluster instance.</td>
</tr>
<tr>
<td>EC2 Platform</td>
<td>Indicates the platform of the EC2 instance, such as Windows or Non-Windows.</td>
</tr>
<tr>
<td>EC2 Public DNS</td>
<td>Indicates the public hostname of the EC2 instance, which resolves to the public IP address or Elastic IP address of the instance.</td>
</tr>
<tr>
<td>EC2 Public IP</td>
<td>Indicates the public IP address of the EC2 instance.</td>
</tr>
<tr>
<td>EC2 RAM disk ID</td>
<td>Indicates the RAM disk associated with the image, if a specific one was selected.</td>
</tr>
<tr>
<td>EC2 Secondary Private IP</td>
<td>Indicates the secondary private IP addresses assigned to a network interface attached to this EC2 instance.</td>
</tr>
<tr>
<td>EC2 Security Group</td>
<td>Indicates the security groups to which the EC2 instance belongs. The following sub-properties are available:</td>
</tr>
<tr>
<td></td>
<td>- Given Name: The user-defined name of the security group.</td>
</tr>
<tr>
<td></td>
<td>- Group Name: The AWS-supplied security group name.</td>
</tr>
<tr>
<td></td>
<td>- ID: The AWS-supplied security group ID.</td>
</tr>
<tr>
<td></td>
<td>- Description: The user-defined description of the security group.</td>
</tr>
<tr>
<td></td>
<td>- Associated VPC ID: The Virtual Private Cloud to which this security group belongs.</td>
</tr>
<tr>
<td>EC2 State</td>
<td>Indicates the most recent power state of the EC2 instance, such as Pending, Running, Stopped, Stopping, or Terminated. This value may be influenced by the Query Interval configured for the Forescout platform’s connection to AWS.</td>
</tr>
<tr>
<td>EC2 Subnet</td>
<td>Indicates the AWS subnet into which the EC2 instance was launched. The following sub-properties are available:</td>
</tr>
<tr>
<td></td>
<td>- EC2 Subnet ID: The AWS ID of the subnet into which the EC2 instance was launched.</td>
</tr>
<tr>
<td></td>
<td>- EC2 Subnet Name: The name of the subnet into which the EC2 instance was launched.</td>
</tr>
<tr>
<td></td>
<td>- EC2 Subnet CIDR: The CIDR block of the subnet into which the EC2 instance was launched.</td>
</tr>
<tr>
<td></td>
<td>- EC2 Subnet IPv6 CIDR: The IPv6 CIDR block of the subnet into which the EC2 instance was launched.</td>
</tr>
</tbody>
</table>
EC2 Tags
Indicates the tags given to the EC2 instance. The following sub-properties are available:
- **Tag Name**: The name of the tag.
 - **Note**: Do not use the value “Name” as the Tag Name.
- **Tag Value**: The value of the tag.

EC2 Termination Protection
Indicates whether termination protection is enabled. When protection is enabled, this EC2 instance cannot be terminated using the console, API, or CLI.

EC2 Instance Type
Indicates the type of EC2 instance by CPU capacity, memory, and storage. For example, m1.small, c1.xlarge.

EC2’s Virtual Private Cloud
Indicates the Virtual Private Cloud (VPC) into which the EC2 instance was launched. The following sub-properties are available:
- **VPC Name**: The VPC name.
- **ID**: The VPC ID.

EC2 CloudWatch Monitoring
Indicates the level of CloudWatch monitoring that is enabled for this instance, such as Basic or Detailed.

AWS IAM Role Properties
This section describes the AWS IAM Role properties.

To access the AWS IAM Role properties:

1. When configuring a policy, select **Add** in the Condition section of the Sub-Rule dialog box.
2. Expand the AWS IAM Role folder.

The following property is available:

<table>
<thead>
<tr>
<th>AWS IAM Role</th>
<th>Indicates the friendly name that identifies the AWS role.</th>
</tr>
</thead>
</table>
AWS IAM User Properties

This section describes the AWS IAM User properties.

To access the AWS IAM User properties:

1. When configuring policies, select Add in the Condition section of the Sub-Rule dialog box.
2. Expand the AWS IAM User folder.

The following properties are available:

IAM User Access Keys	Provides information about the access keys that are associated with the user.
	The following sub-properties are available:
	- Access Key active: The active access key for the user.
	- Access Key last used: The date the access key was last used.
	- Access Key last used service: The service that last used the access key.
	- Access Key last used region: The region in which the access key was last used.

| IAM Console Access Enabled | Indicates whether Console access is enabled for the user. |
IAM MFA Devices
Provides information about the MFA devices.
The following sub-properties are available:
- MFA Serial Number: The serial numbers that uniquely identify the MFA devices.
- MFA Enable Date: The date in which the MFA device was enabled for the user.

IAM MFA Enabled
Indicates whether Multi-Factor Authentication (MFA) is enabled for the user.

IAM Password Policy
Provides information about the account password policy.
The following sub-properties are available:
- Allow Users to Change Password: Whether IAM users are allowed to change their own password.
- Expire Passwords: Whether passwords in the account expire.
- Hard Expiry: Whether IAM users are prevented from setting a new password after their password has expired.
- Max Password Age: The number of days for which an IAM user password is valid.
- Minimum Password Length: The minimum length required for IAM user passwords.
- Password Reuse Prevention: The number of previous passwords that IAM users are prevented from re-using.
- Require Lowercase Characters: Whether to require lowercase characters for IAM user passwords.
- Require Numbers: Whether to require numbers for IAM user passwords.
- Require Symbols: Whether to require symbols for IAM user passwords.
- Require Uppercase Characters: Whether to require uppercase characters for IAM user passwords.

IAM User ARN
Indicates the Amazon Resource Name (ARN) that identifies the user.

IAM User Creation Date
Indicates the date and time the user was created.

IAM Groups
Provides information about the groups to which the user belongs.
The following sub-properties are available:
- Group Name: The name of the group.
- Group ID: The ID of the group.
- Group Path: The path of the group.
- Group ARN: The ARN of the group.
- Group Creation Date: The date when the group was created.

IAM User ID
Indicates the stable and unique string that identifies the user.

IAM User Name
Indicates the friendly name that identifies the user.

IAM User Password Last Used
Indicates the date and time the password was last used to sign in to an AWS website.

IAM User Path
Indicates the path to the user.
AWS S3 Properties

This section describes the AWS S3 properties.

To access the AWS S3 properties:

1. When configuring a policy, select **Add** in the Condition section of the Sub-Rule dialog box.
2. Expand the AWS S3 folder.

The following properties are available:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3 Access Type</td>
<td>Indicates the type of access for the Amazon S3 bucket and its objects:</td>
</tr>
<tr>
<td></td>
<td>- Buckets and objects not public: Both bucket- and object-level access are not public (specific users can be granted access to read and write to both buckets and the objects within them)</td>
</tr>
<tr>
<td></td>
<td>- Error retrieving access type: Received an error retrieving the access type</td>
</tr>
<tr>
<td></td>
<td>- Objects can be public: Objects within this bucket are public (specific users can be given access to the objects within buckets)</td>
</tr>
<tr>
<td></td>
<td>- Only authorized users of this account: Only authorized users of this account have access</td>
</tr>
<tr>
<td></td>
<td>- Public: Both buckets and the objects within them are public to everyone</td>
</tr>
<tr>
<td>S3 Bucket Creation Date</td>
<td>Indicates the date and time when the S3 bucket was created.</td>
</tr>
<tr>
<td>S3 Bucket Location</td>
<td>Indicates the location of the specified Amazon S3 bucket.</td>
</tr>
<tr>
<td>S3 Bucket Name</td>
<td>Indicates the DNS-compliant bucket name.</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
</tr>
<tr>
<td>S3 Owner ID</td>
<td>Indicates the ID that identifies the S3 bucket owner.</td>
</tr>
<tr>
<td>S3 Owner Name</td>
<td>Indicates the name of the S3 bucket owner.</td>
</tr>
<tr>
<td>S3 Properties</td>
<td>Indicates the S3 bucket properties. The following sub-properties are available: Encrypted: Is S3 bucket encrypted? KMS Master Key ID: The ID of the KMS managed key used to encrypt S3 bucket objects. SSE Algorithm Used: The Server-Side Encryption (SSE) algorithm used for default encryption. The types of encryption are AWS:AES-256 and AWS:KMS. Object Locking Status: The status of the lock on objects within this S3 bucket. </td>
</tr>
<tr>
<td>S3 Tags</td>
<td>Indicates the tags given to the S3 bucket. The following sub-properties are available: Tag Name: The name of the tag.
Note: Do not use the value "Name" as the Tag Name. Tag Value: The value of the tag. </td>
</tr>
</tbody>
</table>

AWS Service Properties

This section describes the AWS Service properties.

To access the AWS Service properties:

1. When configuring a policy, select **Add** in the Condition section of the Sub-Rule dialog box.
2. Expand the AWS Service folder.

The following property is available:

| **AWS Config** | Indicates whether AWS Config is enabled on this account/region. |
AWS VPC Properties

This section describes the AWS VPC properties.

To access the AWS VPC properties:

1. When configuring a policy, select Add in the Condition section of the Sub-Rule dialog box.

2. Expand the AWS VPC folder.
The following properties are available:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Peering Connection** | Provides information about the VPC peering connection. The following sub-properties are available:
 - Peering Connection ID: The ID of the peering connection.
 - Peering Connection Name: The name of the peering connection.
 - Peering Connection Status: The status of the peering connection.
 - Peering Connection Requester Region: The region of the peering connection requester.
 - Peering Connection Requester VPC ID: The VPC ID of the peering connection requester.
 - Peering Connection Requester VPC Name: The VPC Name of the peering connection requester.
 - Peering Connection Acceptor Region: The region of the peering connection accepter.
 - Peering Connection Acceptor VPC ID: The VPC ID of the peering connection accepter.
 - Peering Connection Acceptor VPC Name: The VPC Name of the peering connection accepter. |
| **VPC Flowlog Enabled** | Indicates whether VPC flowlog is enabled. |
| **VPC ID** | Indicates the stable and unique string that identifies the VPC. |
| **VPC Internet Gateway Information** | Provides information about Internet gateways on this VPC. The following sub-properties are available:
 - Internet Gateway ID: The stable and unique string identifying the Internet Gateway.
 - Internet Gate Name: The friendly name identifying the Internet Gateway.
 - Internet Gate State: The Internet Gateway state.
 - Egress Gateway: The Internet Gateway as either egress or ingress. |
| **VPC Load Balancer Information** | Provides information about load balancers on this VPC. The following sub-properties are available:
 - Load Balancer Scheme: The scheme of the load balancer.
 - Load Balancer Type: The type of the load balancer.
 - Load Balancer Name: The name of the load balancer. |
| **VPC Name** | Indicates the friendly name that identifies the VPC. |
| **VPC Network ACL** | Indicates the VPC network ACL. |
| **VPC Route Tables** | Provides information about route tables on this VPC. |
| **VPC Subnet Information** | Provides information about subnets on this VPC. The following sub-properties are available:
 - Subnet Name: The friendly name identifying the VPC subnet.
 - Subnet IPv4 CIDR: The IPv4 CIDR of the VPC subnet.
 - Subnet IPv6 CIDR: The IPv6 CIDR of the VPC subnet. |
Manage AWS Cloud Endpoints

Once the AWS Plugin has been configured, you can view and manage the virtual endpoints from the Asset Inventory view in the Console. This provides activity information, accurate at the time of the poll, on cloud endpoints based on certain instance properties. The Asset Inventory lets you:

- Complement a device-specific view of the organizational network with an activity-specific view
- View virtual machine endpoints that were detected with specific attributes
- Incorporate inventory detections into policies

Refer to Working with Asset Inventory Detections in the Forescout Administration Guide or the Online Help for information about how to work with the Asset Inventory. See Additional Forescout Documentation for information on how to access this guide.

Access AWS IAM Role Inventory

Use the AWS IAM Role inventory to view IAM role-related summary and detailed information.

To access the AWS IAM Role inventory:

1. Log in to the Console and select Asset Inventory.

2. In the Views pane, select AWS IAM Role.

The AWS IAM Role information is displayed.
3. To view details, select a specific AWS IAM Role.

Access AWS EC2 Inventory

Use the AWS EC2 inventory to view EC2-related summary and detailed information.

To access the AWS EC2 inventory:

1. Log in to the Console and select **Asset Inventory**.
2. In the Views pane, expand the **AWS EC2** folder.

3. Select an AWS EC2 item, for example, EC2 Tags, to view the real-time inventory information. For details, select a specific AWS EC2.
4. To view more inventory information, select another AWS EC2 item, for example, EC2 Instance Type, EC2 Launch Details, EC2 Location, EC2 Security Group, EC2 State, or EC2’s Virtual Private Cloud.

Access AWS IAM User Inventory

Use the AWS IAM User inventory to view IAM user-related summary and detailed information.

To access the AWS IAM User inventory:

1. Log in to the Console and select **Asset Inventory**.
2. In the Views pane, expand the **AWS IAM User** folder.

3. Select an AWS IAM User item, for example, IAM User Name, to view the real-time inventory information. For details, select a specific IAM User Name.
4. To view more inventory information, select another AWS IAM item, for example, IAM Groups.

Access AWS S3 Inventory

Use the AWS S3 inventory to view S3-related information.

To access the AWS S3 inventory:

1. Log in to the Console and select **Asset Inventory**.
2. In the Views pane, expand the **AWS S3** folder.
3. Select an AWS S3 item, for example, S3 Access Type, to view the real-time inventory information. For details, select a specific S3 Access Type.
4. To view more inventory information, select another AWS S3 item, for example, S3 Tags.

Access AWS VPC Inventory

Use the AWS VPC inventory to view VPC-related summary and detailed information.

To access the AWS VPC inventory:

1. Log in to the Console and select **Asset Inventory**.
2. In the Views pane, expand the **AWS VPC** folder.

 ![AWS VPC Inventory](image)

3. Select an AWS VPC item, for example, VPC Name, to view the real-time inventory information. For details, select a specific VPC Name.
4. To view more inventory information, select another AWS VPC item, for example, VPC Internet Gateway Information, VPC Load Balancer Information, or VPC Subnet Information.

Run Policy Actions

Policy actions are organized into the following groups:

- Manually Run AWS Actions on EC2 Instance
- Manually Run AWS IAM Actions
- Manually Run AWS S3 Actions
- Manually Run AWS VPC Actions

If you are using Flexx licensing, ensure that you have a valid Forescout eyeControl license to use these actions. Refer to the Forescout Flexx Licensing How-to Guide for more information about managing licenses.

Manually Run AWS Actions on EC2 Instance

Use the actions described in this section for visibility and control of AWS. While AWS EC2 actions can be launched as part of a policy, you can also manually run an action.
To manually run an AWS EC2 action:

1. Log in to the Console, select Home, and select All Hosts.

2. In the All Hosts pane, select a host entry.

3. Right-click an endpoint, select AWS EC2, and select an action.

4. For details on the AWS EC2 actions, see:
 - Apply EC2 Security Groups Action
 - Disable EC2 Termination Protection Action
 - Enable EC2 Termination Protection Action
 - Start EC2 Instance Action
 - Stop EC2 Instance Action

Apply EC2 Security Groups Action

Use this action to set security groups for an AWS endpoint.

A security group acts as a firewall that controls the traffic for one or more EC2 instances. Each security group has a set of rules that you define, which specify the kind of connections, such as the IP addresses, ports, or protocols that are allowed. These rules are defined in the AWS console.

When a security group action is applied to a cloud instance, that instance is allowed to send/receive traffic based on the security group's rules.
To run the Apply EC2 Security Groups action:

1. Log in to the Console, select Home, and select All Hosts.
2. In the All Hosts pane, right-click an endpoint, select AWS EC2, and select Apply EC2 Security Groups.

3. In the Append or overwrite field, select one of the following:
 - Append this list to the current Security Group list, which adds the selected security groups to the current Security Group list.
 - Overwrite the current Security Group list with this list, which replaces the current Security Group list with the list you selected. This option is useful for isolating a non-compliant endpoint by applying it only with restrictive security groups.

4. To select all security groups, select Select all Security Groups or select Specify Security Groups and select one or more security groups in the table.
 - To select all security groups, select Select All.
 - To clear all security groups, select Clear All.
 - To filter the security groups, enter text in the Search field to match security group names.

5. Select OK or select the Schedule tab to schedule the action.
6. Select one of the following Action Schedule options:
 - **Start action when the endpoint matches a policy condition**, which implements the policy when the policy condition(s) is met by the endpoint.
 - **Customize action start time**, which opens the Action Scheduler dialog box.

7. Set the schedule parameters and select **OK**.

8. In the Specify Apply EC2 Security Groups parameters dialog box, select **OK**.
Disable EC2 Termination Protection Action

Use this action to remove (disable) termination protection from an EC2 instance. If termination protection is disabled, it can be terminated through the AWS Console, API, or CLI. Enabling termination protection prevents accidental termination of EC2 instances.

To run the Disable EC2 Termination Protection action:

1. Log in to the Console, select Home, and select All Hosts.
2. In the All Hosts pane, right-click an endpoint, select AWS EC2, and select Disable EC2 Termination Protection.

3. Select one of the following Action Schedule options:
 - Start action when the endpoint matches a policy condition, which implements the policy when the policy condition(s) is met by the endpoint.
 - Customize action start time, which opens the Action Scheduler dialog box.
4. Set the schedule parameters and select OK.

5. In the Specify Disable EC2 Termination Protection parameters dialog box, select OK.

Enable EC2 Termination Protection Action

Use this action to apply (enable) termination protection for an EC2 instance. Enabling termination protection prevents accidental termination of EC2 instances.

If termination protection is disabled, stopping EC2 instances may also terminate them. You can start or stop the selected EC2 instance through the AWS Console, API, or CLI.

If termination protection is enabled, stopping EC2 instances does not terminate them.

To run the Enable EC2 Termination Protection action:

1. In the All Hosts pane, right-click an endpoint, select AWS EC2, and select Enable EC2 Termination Protection.
2. Select one of the following Action Schedule options:

- **Start action when the endpoint matches a policy condition**, which implements the policy when the policy condition(s) is met by the endpoint.
- **Customize action start time**, which opens the Action Scheduler dialog box.
3. Set the schedule parameters and select **OK**.

4. In the Specify Enable EC2 Termination Protection parameters dialog box, select **OK**.

Start EC2 Instance Action

Use this action to start an EC2 instance that is not in the running state.

To run the Start EC2 Instance action:

1. Log in to the Console, select **Home**, and select **All Hosts**.
2. In the All Hosts pane, right-click an endpoint, select **AWS EC2**, and select **Start EC2 Instance**.
3. Select one of the following Action Schedule options:

- **Start action when the endpoint matches a policy condition**, which implements the policy when the policy condition(s) is met by the endpoint.
- **Customize action start time**, which opens the Action Scheduler dialog box.
4. Set the schedule parameters and select **OK**.
5. In the Specify Start EC2 Instance parameters dialog box, select **OK**.

Stop EC2 Instance Action

Use this action to stop an EC2 instance that is in the running state.

To run the Stop EC2 Instance action:

1. Log in to the Console, select **Home**, and select **All Hosts**.
2. In the All Hosts pane, right-click an endpoint, select **AWS EC2**, and select **Stop EC2 Instance**.
3. Select one of the following Action Schedule options:

- **Start action when the endpoint matches a policy condition**, which implements the policy when the policy condition(s) is met by the endpoint.
- **Customize action start time**, which opens the Action Scheduler dialog box.
4. Set the schedule parameters and select OK.
5. In the Specify Stop EC2 Instance parameters dialog box, select OK.

Manually Run AWS IAM Actions

Use the actions in this section for visibility and control of AWS IAM users. Control actions such as Activate/Deactivate User Access Key allow remediation upon non-compliance, allowing automated polices.

While AWS IAM actions can be launched as part of a policy, you can also manually run an action.

To manually run an AWS IAM action:
1. Log in to the Console, select **Home**, and select **All Hosts**.
2. In the All Hosts pane, select a host entry.
3. Right-click an AWS endpoint, select **AWS IAM**, and select an action.
4. Select the following links for information on AWS IAM actions:
 - **Activate User Access Key Action**
 - **Deactivate User Access Key Action**
 - **Delete User Access Key Action**
 - **Enforce Password Policy Action**

Activate User Access Key Action

Use this action to activate an access key for the AWS IAM user.

To run the Activate User Access Key action:

1. Log in to the Console, select **Home**, and select **All Hosts**.
2. In the All Hosts pane, right-click an AWS endpoint, select **AWS IAM**, and select **Activate User Access Key**.
3. Select one of the following Action Schedule options:
 - **Start action when the endpoint matches a policy condition**, which implements the policy when the policy condition(s) is met by the endpoint.
 - **Customize action start time**, which opens the Action Scheduler dialog box.

4. Set the schedule parameters and select **OK**.

5. In the Specify Activate User Access Key parameters dialog box, select **OK**.

Deactivate User Access Key Action

Use this action to deactivate an access key for the AWS IAM user.

To run the Deactivate User Access Key action:

1. Log in to the Console, select **Home**, and select **All Hosts**.
2. In the All Hosts pane, right-click an AWS endpoint, select **AWS IAM**, and select **Deactivate User Access Key**.
3. Select one of the following Action Schedule options:

- **Start action when the endpoint matches a policy condition**, which implements the policy when the policy condition(s) is met by the endpoint.

- **Customize action start time**, which opens the Action Scheduler dialog box.
4. Set the schedule parameters and select OK.

5. In the Specify Deactivate User Access Key parameters dialog box, select OK.

Delete User Access Key Action

Use this action to permanently delete an access key for the AWS IAM user.

To run the Delete User Access Key action:

1. Log in to the Console, select **Home**, and select **All Hosts**.
2. In the All Hosts pane, right-click an AWS endpoint, select **AWS IAM**, and select **Delete User Access Key**.
3. Select one of the following Action Schedule options:

- **Start action when the endpoint matches a policy condition**, which implements the policy when the policy condition(s) is met by the endpoint.
- **Customize action start time**, which opens the Action Scheduler dialog box.
4. Set the schedule parameters and select **OK**.

5. In the Specify Delete User Access Key parameters dialog box, select **OK**.

Enforce Password Policy Action

Use this action to enforce the password policy for AWS IAM users with no password policy set.

To run the Enforce Password Policy action:

1. Log in to the Console, select **Home**, and select **All Hosts**.

2. In the All Hosts pane, right-click an AWS endpoint, select **AWS IAM**, and select **Enforce Password Policy**.
3. Set the password policy parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allow Users to Change Password</td>
<td>Specify whether users can change their own password.</td>
</tr>
<tr>
<td>Expire Passwords</td>
<td>Specify whether passwords expire.</td>
</tr>
<tr>
<td>Hard Expiry</td>
<td>Specify whether passwords have a hard expiry.</td>
</tr>
<tr>
<td>Max Password Age</td>
<td>Specify the value for maximum password age. The password expiration period</td>
</tr>
<tr>
<td></td>
<td>must be a whole number between 1 and 1095 days, inclusive.</td>
</tr>
<tr>
<td>Minimum Password Length</td>
<td>Specify the value for minimum password length. The minimum password length</td>
</tr>
<tr>
<td></td>
<td>must be a whole number greater than or equal to 6.</td>
</tr>
<tr>
<td>Password Reuse Prevention</td>
<td>Specify the value for password reuse prevention. The number of passwords to</td>
</tr>
<tr>
<td></td>
<td>remember must be between 1 and 24, inclusive.</td>
</tr>
<tr>
<td>Require Lowercase Characters</td>
<td>Specify whether the password must contain lowercase characters.</td>
</tr>
<tr>
<td>Require Numbers</td>
<td>Specify whether the password must contain numbers.</td>
</tr>
<tr>
<td>Require Symbols</td>
<td>Specify whether the password must contain symbols.</td>
</tr>
</tbody>
</table>
Require Uppercase Characters

Specify whether the password must contain uppercase characters.

4. Select the Schedule tab.

![Specify Enforce Password Policy parameters](image)

5. Select one of the following Action Schedule options:
 - **Start action when the endpoint matches a policy condition**, which implements the policy when the policy condition(s) is met by the endpoint.
 - **Customize action start time**, which opens the Action Scheduler dialog box.
6. Set the schedule parameters and select **OK**.
7. In the Specify Enforce Password Policy parameters dialog box, select **OK**.

Manually Run AWS S3 Actions

Use the actions in this section for visibility and control of AWS S3s.

While AWS S3 actions can be launched as part of a policy, you can also manually run an action.

To manually run an AWS S3 action:
1. Log in to the Console, select **Home**, and select **All Hosts**.
2. In the All Hosts pane, select a host entry.
3. Right-click an AWS endpoint, select **AWS S3**, and select an action.
4. Select the following link for information on AWS S3 actions:
 − Block Public Access Action

Block Public Access Action

Use this action to block public access to a specific S3 bucket.

To run the Block Public Access action:

1. Log in to the Console, select **Home**, and select **All Hosts**.
2. In the All Hosts pane, right-click an AWS endpoint, select **AWS S3**, and select **Block Public Access**.

3. Select one of the following Action Schedule options:
 − **Start action when the endpoint matches a policy condition**, which implements the policy when the policy condition(s) is met by the endpoint.
– **Customize action start time**, which opens the Action Scheduler dialog box.

![Action Scheduler](image)

4. Set the schedule parameters and select **OK**.
5. In the Specify Block Public Access parameters dialog box, select **OK**.

Manually Run AWS VPC Actions

Use the actions in this section for visibility and control of AWS VPCs.

While AWS VPC actions can be launched as part of a policy, you can also manually run an action.

To manually run an AWS VPC action:

1. Log in to the Console, select **Home**, and select **All Hosts**.
2. In the All Hosts pane, select a host entry.
3. Right-click an AWS endpoint, select **AWS VPC**, and select an action.
4. Select the following link for information on AWS VPC actions:
 − Detach Internet Gateway(s) Action

Detach Internet Gateway(s) Action

Use this action to detach (terminate) the Internet gateway or egress-only Internet gateway from the AWS VPC.

To run the Detach Internet Gateway(s) action:

1. Log in to the Console, select **Home**, and select **All Hosts**.
2. In the All Hosts pane, right-click an AWS endpoint, select **AWS VPC**, and select **Detach Internet Gateway(s)**.

3. Select one of the following Action Schedule options:
 − **Start action when the endpoint matches a policy condition**, which implements the policy when the policy condition(s) is met by the endpoint.
– **Customize action start time**, which opens the Action Scheduler dialog box.

![Action Scheduler Dialog Box]

4. Set the schedule parameters and select **OK**.
5. In the Specify Detach Internet Gateway(s) parameters dialog box, select **OK**.

Set Action Thresholds

To restrict the number of actions, use action thresholds, which are designed to automatically implement safeguards. An action threshold is the maximum percentage of endpoints that can be controlled by a specific action type defined at a single device.

The Stop EC2 Instance and Apply EC2 Security Groups actions have a default 2% action threshold, which can be scaled up to 100%.

For more information about action thresholds, refer to the *Forescout Administration Guide*. See [Additional Forescout Documentation](#) for information on how to access this guide.

To change an action threshold:

1. In the Options pane, select **NAC > Actions Thresholds**.
2. In the Actions table, select **Stop EC2 Instance** or **Apply EC2 Security Groups**.

3. In the Threshold Details section, select the Configuration tab, select **Custom**, and type a value in the field.

4. Select **Apply**.

Best Practices for Working with the AWS Plugin

The following are some helpful guidelines to follow when using the AWS Plugin.

1. **Create an AWS user account** – Ask your AWS management personnel to create a new AWS user account with programmatic access for you. Programmatic access creates an access key ID and secret access key that is required when configuring the AWS Plugin. The recommended number of AWS accounts for a single Appliance is five.

2. **Level of Access** – The AWS user used by the Forescout platform should have full access across a range of permissions. See [Specify Permissions Using Standard AWS Policies](#).

3. **AWS Regions** – If you want complete visibility across all regions, select all of the available regions while performing sync during configuration. For a restrictive view, select specific regions only.

4. **Set Communications with AWS (Polling)** – When configuring the AWS Plugin, it is recommended to use the default setting for **Query Interval**. Depending on the amount of data, the polling of AWS entities can take 30 minutes for 20,000 instances.

5. **Active Discovery** – If you do not want the Forescout platform to perform Active Discovery, such as NMAP, HPS Inspection, or WMI on EC2 instances, make sure your EC2 instances are not reachable from the Forescout platform or their IP address segment is not included in any base classification policy.
Hybrid Cloud Module Information

The Amazon Web Services Plugin is installed with the Forescout Hybrid Cloud Module.

The Forescout Hybrid Cloud Module provides visibility and control functions across physical and virtual devices that are on-premises and off-premises through the following plugin integrations:

- AWS Plugin
- Azure Plugin
- VMware NSX Plugin
- VMware vSphere Plugin

The Hybrid Cloud Module is a Forescout Base Module. Base Modules are delivered with each Forescout release.

The plugins listed above are installed and rolled back with the Hybrid Cloud Module.

Refer to the Forescout Hybrid Cloud Module Overview Guide for more module information, such as module requirements, upgrade, and rollback instructions.

Additional Forescout Documentation

For information about other Forescout features and modules, refer to the following resources:

- Documentation Downloads
- Documentation Portal
- Forescout Help Tools

Documentation Downloads

Documentation downloads can be accessed from the Forescout Technical Documentation Page, and one of two Forescout portals, depending on which licensing mode your deployment is using.

- Per-Appliance Licensing Mode – Product Updates Portal
- Flexx Licensing Mode – Customer Support Portal

Software downloads are also available from these portals.

To identify your licensing mode:

- From the Console, select Help > About Forescout.

Forescout Technical Documentation Page

The Forescout Technical Documentation Page provides access to a searchable, web-based Documentation Portal as well as PDF links to the full range of technical documentation.
To access the Technical Documentation Page:
- Go to https://www.Forescout.com/company/technical-documentation/

Product Updates Portal
The Product Updates Portal provides links to Forescout version releases, Base and Content Modules, and eyeExtend products, as well as related documentation. The portal also provides a variety of additional documentation.

To access the Product Updates Portal:
- Go to https://updates.forescout.com/support/index.php?url=counteract and select the version you want to discover.

Customer Support Portal
The Downloads page on the Forescout Customer Support Portal provides links to purchased Forescout version releases, Base and Content Modules, and eyeExtend products, as well as related documentation. Software and related documentation will only appear on the Downloads page if you have a license entitlement for the software.

To access documentation on the Customer Support Portal:
- Go to https://Forescout.force.com/support/ and select Downloads.

Documentation Portal
The Forescout Documentation Portal is a searchable, web-based library containing information about Forescout tools, features, functionality, and integrations.

To access the Documentation Portal:
- Go to https://updates.forescout.com/support/files/counteract/docs_portal/

Forescout Help Tools
Access information directly from the Console.

Console Help Buttons
Use context sensitive Help buttons to quickly access information about the tasks and topics you are working with.

Forescout Administration Guide
- Select Administration Guide from the Help menu.

Plugin Help Files
- After the plugin is installed, select Tools > Options > Modules, select the plugin and then select Help.

Documentation Portal
- Select Documentation Portal from the Help menu to access the Documentation Portal.