

Industroyer2 and
INCONTROLLER

In-depth Technical Analysis of the Most Recent ICS-specific Malware

Industroyer2 and INCONTROLLER 2

Contents
1. Executive Summary.. 3

2. Technical Analysis .. 4

2.1. Industroyer2 .. 4

2.1.1. Configuration .. 4

2.1.2. Logic of Operation .. 7

2.1.3. IEC-104 Protocol Implementation .. 9

2.1.4. Dynamic Behavior .. 11

2.1.5. Other Considerations.. 11

2.2. CISA AA22-103A: APT Cyber Tools Targeting ICS/SCADA Devices (aka INCONTROLLER, aka

PIPEDREAM) .. 12

2.2.1. Lazycargo Analysis... 13

2.2.2. Codecall/Evilscholar ... 23

2.2.3. Omshell/Badomen .. 25

2.2.4. Tagrun/Mousehole.. 27

3. IoCs .. 27

4. Mitigation Recommendations ... 29

5. References ... 29

Acknowledgment

We would like to thank Dr. Emmanuele Zambon at the Eindhoven University of Technology for his analysis

of Industroyer2, included in Section 2.1 of this report, and his technical review of this document.

Industroyer2 and INCONTROLLER 3

1. Executive Summary
Industroyer2 and INCONTROLLER, also known as PIPEDREAM, are the newest examples of ICS-specific

malware and were disclosed to the public almost simultaneously on April 12 and 13, 2022, respectively.

Industroyer2 leverages OS-specific wipers and a dedicated module to communicate over the IEC-104

industrial protocol. INCONTROLLER is a full toolkit containing modules to send instructions to or retrieve data

from ICS devices using industrial network protocols, such as OPC UA, Modbus, CODESYS, Machine Expert

Discovery and Omron FINS. Additionally, Industroyer2 has a highly targeted configuration, while

INCONTROLLER is much more reusable across different targets.

ICS-specific malware is still very rare when compared to commodity malware, such as ransomware or banking

trojans. Industroyer2 and INCONTROLLER follow previous-known examples, such as Stuxnet, Havex,

BlackEnergy2, Industroyer and TRITON, shown in the timeline figure below.

Both Industroyer2 and INCONTROLLER were caught before causing physical disruption. Industroyer2 is

believed to have been developed and deployed by the Sandworm APT, linked to the Russian GRU, which was

behind the original attacks on the Ukrainian power grid in 2015 and 2016. The Industroyer2 incident follows

recent activity against the APT in 2022, such as the disruption of the Cyclops Blink botnet. There is still no

conclusive evidence about the actors behind INCONTROLLER, their motives or objectives.

Both new malwares show that abusing often insecure-by-design native capabilities of OT equipment continues

to be the preferred modus operandi of real-world attackers. Vedere Labs recently disclosed a set of 56

insecure-by-design vulnerabilities in OT equipment called OT:ICEFALL, which included Omron controllers that

were targeted by INCONTROLLER. The emergence of new vulnerabilities and new malware exploiting the

insecure-by-design nature of OT supports the need for robust OT-aware network monitoring and deep packet

inspection capabilities.

This briefing presents the most detailed (to date) public technical analysis of Industroyer2 and

INCONTROLLER (Section 2), a list of IoCs extracted from those samples and other shared intelligence

(Section 3) and recommended mitigations (Section 4).

Although there have been previous reports about both malware families analyzed in this research, we present

the following new contributions:

• A functionality in Industroyer2 to discover the target’s Common Address of ASDU. Despite not being used

given the hardcoded configuration of our sample, it might have been a tool used in previous

reconnaissance stages to gather information about the target (Section 2.1.2)

• An analysis of the similarity of the IEC-104 implementation in Industroyer that reveals it is very probably a

modified version of a publicly available implementation (Section 2.1.3)

• The most detailed public description so far of Lazycargo, a part of INCONTROLLER, which became

publicly available (Section 2.2.1)

https://www.welivesecurity.com/2022/04/12/industroyer2-industroyer-reloaded/
https://www.mandiant.com/resources/incontroller-state-sponsored-ics-tool
https://malpedia.caad.fkie.fraunhofer.de/details/win.stuxnet
https://malpedia.caad.fkie.fraunhofer.de/details/win.havex_rat
https://malpedia.caad.fkie.fraunhofer.de/details/win.blackenergy
https://malpedia.caad.fkie.fraunhofer.de/details/win.industroyer
https://malpedia.caad.fkie.fraunhofer.de/details/win.triton
https://malpedia.caad.fkie.fraunhofer.de/actor/sandworm
https://www.forescout.com/resources/monitoring-cyber-activities-connected-to-the-russian-ukrainian-conflict/
https://www.darkreading.com/vulnerabilities-threats/russian-gru-botnet-disrupted-in-fbi-led-operation
https://www.forescout.com/research-labs/ot-icefall/

Industroyer2 and INCONTROLLER 4

2. Technical Analysis

2.1. Industroyer2

ESET researchers responded to a cyber incident affecting an energy provider in Ukraine. This response

resulted in the discovery of a new variant of the Industroyer malware, which ESET together with CERT-UA

named Industroyer2. Industroyer is an infamous piece of malware that was used in 2016 by the Sandworm

APT group to cut the power in Ukraine.

Several researchers pointed out that the new sample bears a lot of similarities with the original Industroyer.

However, while the original version supported several industrial network protocols, the version used in the new

incident supports only the IEC-104 protocol. The sample tests connectivity to a list of hardcoded control

stations and sends sets of hardcoded commands over the IEC-104 protocol, setting specific Information Object

Addresses (IOA) for specific Application Service Data Unit (ASDU) addresses to either the “ON” or “OFF”

state. As ESET researchers pointed out, this may lead to power cuts within the targeted ICS systems.

We have analyzed the IEC-104 sample with SHA-1 fdeb96bc3d4ab32ef826e7e53f4fe1c72e580379 and

presumed filename 40_115.exe. Our static analysis revealed details of the hardcoded configuration and logic

workflow of the sample.

2.1.1. Configuration

The configuration is built as an array of strings. Every array item specifies the configuration for a single IEC-

104 target server and is specified as a space-separated list of tokens. Tokens can be logically grouped in a

header, followed by an optional list of Information Object (IO)-specific parameters. The format of the header is

reported in the table below.

Name Optional Description

Target IP No IP address of the target IEC-104 server.

Target Port No TCP port of the target IEC-104 server.

Common Address No Common Address of ASDU associated with the target IEC-104

server.

Operational Mode No If set to 0, the sample will derive which IOs to interact with from

the optional list of IO parameters that follows the header. If set

to 1, the sample will derive which IOs to interact with from the

optional IOA range information that follows this token.

IOA Range Start Yes Information Object Address range start. This token is only

specified if Operational Mode is 1.

IOA Range End Yes Information Object Address range end. This token is only

specified if Operational Mode is 1.

Extended Config No If set to 1, the configuration header is extended with 9 extra

tokens.

https://www.welivesecurity.com/2022/04/12/industroyer2-industroyer-reloaded/
https://cert.gov.ua/article/39518
https://www.ipcomm.de/protocol/IEC104/en/sheet.html

Industroyer2 and INCONTROLLER 5

Boolean Flag Yes Unused. This token is only specified if Extended Config is 1.

Target Executable Yes Executable name of the process to kill before attempting

connection with the target IEC-104 server. This token is only

specified if Extended Config is 1.

Rename Executable Yes If set to 1, the executable previously specified will also be

renamed to prevent watchdog restarts. This token is only

specified if Extended Config is 1.

Target Executable

Folder

Yes Path to the folder where the target executable is stored. This

token is only specified if Extended Config is 1.

Interaction Delay Yes Delay (in minutes) before a connection is attempted to the

target IEC-104 server after killing the target executable. This

token is only specified if Extended Config is 1.

Default Sleep Time Yes Delay (in seconds) applied after sending commands with a

certain priority level. This token is only specified if Extended

Config is 1.

Special Priority Yes Priority level for configuring a different sleep time. This token is

only specified if Extended Config is 1.

Special Sleep Time

Yes Delay (in seconds) applied after sending commands with priority

level specified above. This token is only specified if Extended

Config is 1.

Boolean Flag Yes Unused. This token is only specified if Extended Config is 1.

Default IO State No If set to 1, the state of single and double IOs will be set to On,

otherwise the state will be set to Off.

Additional Inverted IO

State

No If set to 1, the sample will send additional commands for each

configured IO inverting the default state.

IO Count No Number of IO-specific parameter groups following the header.

The format of each IO-specific parameter group is reported in the table below.

Name Optional Description

IOA No Address of the Information Object.

Type ID No Type of IEC-104 command used for setting the IO value.

Possible values are 0 for double command IOs (C_DC_NA_1)

and 1 for single command IOs (C_SC_NA_1).

SBO No If set to 1, the sample will use the Select Before Operate

paradigm to set the IO value.

Invert Default State No If set to 0, the state of the IO will be set to the default value

specified in the header. If set to 1, the state of the IO will be set

to the inverse of the default value.

Priority No Priority of commands for this IO. The sample will send

commands to the target IEC-104 server processing IOs with

lower to higher priority.

Index No Defines the order by which commands for this IO will be

processed as compared to the ones with the same priority.

Industroyer2 and INCONTROLLER 6

Using this knowledge, it is possible to examine the configuration hardcoded in this sample. The configuration

header is displayed in the table below.

Field Target 1 Target 2 Target 3

Target IP 10.82.40.105 192.168.122.2 192.168.121.2

Target Port 2404 2404 2404

Common Address 3 2 1

Operational Mode 0 0 0

IOA Range Start N/A N/A N/A

IOA Range End N/A N/A N/A

Extended Config 1 1 1

Boolean Flag 1 1 1

Target Executable PService_PPD.exe PService_PPD.exe PService_PPD.exe

Rename Executable 1 1 1

Target Executable

Folder

D:\OIK\DevCounter D:\OIK\DevCounter D:\OIK\DevCounter

Interaction Delay 0 0 0

Default Sleep Time 1 1 1

Special Priority 0 0 0

Special Sleep Time 0 0 0

Boolean Flag 1 1 1

Default IO State 0 0 0

Invert IO Value 0 0 0

IO Count 44 8 16

The first IO-specific group of parameters for each configuration item is reported in the table below as an

example.

Field Target 1 Target 2 Target 3

IOA 130202 1104 1258

Type ID 1 (C_SC_NA_1) 0 (C_DC_NA_1) 0 (C_DC_NA_1)

SBO 0 (Direct Operate) 0 (Direct Operate) 0 (Direct Operate)

Invert Default State 1 0 0

Priority 1 1 1

Index 1 1 1

Industroyer2 and INCONTROLLER 7

2.1.2. Logic of Operation

The Industroyer2 sample is meant to be executed in the machine acting as IEC-104 controlling station for its

targets. The workflow below displays a high-level representation of the sample’s logic.

For each configuration item, the sample parses the configuration string and creates a data structure that holds

configuration parameters, as well as runtime parameters.

Killing running services and renaming executable

It then kills the process with executable name “PServiceControl.exe”, as well as the process with executable

name “PService_PDD.exe”, which is also renamed as “PService_PDD.exe.MZ”. Killing the

“PService_PDD.exe” service causes the interruption of any existing communication with target IEC-104

servers, which usually supports at most one active connection at a time. Having interrupted existing

connections, Industroyer2 is free to connect to the targets. Renaming the service is a possible measure to

prevent automatic service restarts. This behavior suggests some ties to the BlackEnergy malware, which also

killed a service called “PService_PDD.exe” before execution.

After this initial phase, the sample spawns a thread responsible for interaction with the target. At first, the

thread is set to sleep for a time specified by the Interaction Delay parameter. This delay could be needed to

ensure the target realizes the existing connection with the master is interrupted and becomes ready to accept

new connections.

The thread then loops over the priority levels configured for all IOs, from lower to higher priority levels.

Target connection

https://malpedia.caad.fkie.fraunhofer.de/details/win.blackenergy

Industroyer2 and INCONTROLLER 8

The sample connects to the target using the IP and port specified in the configuration. Upon success, it first

sends a TESTFR act IEC-104 message, followed by a STARTDT act message, which starts the data transfer

between the controlling station and the controlled station.

Once the target is connected and data transfer is enabled, the sample verifies if the Common Address of

ASDU (CA) for the target is known in the configuration.

Discovery of the target’s Common Address of ASDU

If the target’s CA unknown (i.e., set to -1 in the configuration), the sample sends a general interrogation

command activation message (C_IC_NA_1 act) with CA set to 65535, which is a special address defined in

the standard as “global” for broadcast purposes. The target IEC-104 server will respond with a general

interrogation command activation confirmation message containing its true CA. In this way, the sample can

learn the CA of the target server. After learning the CA of the target, the sample sends a STOPDT act

message to stop IEC-104 data transfer and disconnects from the target.

To the best of our knowledge, this discovery functionality was not documented in previous technical reports

and, despite not being used given the hardcoded configuration of our sample, it might have been a tool used in

previous reconnaissance stages to gather information about the target(s).

Changing the position of configured IOs

If the target’s CA is known, the sample sends a general interrogation command activation message

(C_IC_NA_1 act).

In case the configuration for all IOs with a certain priority level excludes the use of the Select Before Operate

(SBO) paradigm, the sample first generates for all IOs with that priority either single command

(C_SC_NA_1 act) or double command (C_DC_NA_1 act) activation messages (depending on the

configuration) with the Select/Execute bit set to Execute, and then sends messages in batches of data of 128

bytes max. We notice that the thread executing these operations is put to sleep for a fixed amount of time (one

second) after generating the command corresponding to a certain IO, regardless of whether commands are

being sent to the target or just buffered locally. We could not find a meaningful explanation for this behavior.

In case at least one of the IOs with the current priority level is configured to use the SBO paradigm, the sample

does not buffer commands. Instead, it iterates over all configured IOs and directly sends either single

command (C_SC_NA_1 act) or double command (C_DC_NA_1 act) activation messages (depending on the

configuration). In case the configuration specifies to use SBO, the sample first sends a single or double

command with the Select/Execute bit set to Select. In both cases, the sample always sends the single or

double command with the Select/Execute bit set to Execute.

The parameters of single or double commands that the sample sends to the target are set as follows:

• Cause of Transmission: hardcoded to 6 (activation)

• Originator Address: hardcoded to 0

• Common Address of ASDU: as specified in the “Common Address” configuration parameter

• Information Object Address: as specified in the “IOA” configuration parameter

• Qualifier: hardcoded to 2 (short pulse)

• Select/Execute bit: according to the logic described above

• Single/Double Command: initially set according to the “Default IO State” configuration parameter and

possibly inverted according to IO’s “Invert Default State” configuration parameter

Industroyer2 and INCONTROLLER 9

In case the IO’s configuration parameter “Invert Default State” is set to true, the sample sends the

single/double commands once more by temporarily inverting the value of the “Default IO State” configuration

parameter. This causes flipping the position of the targeted single or double Information Objects (from On to

Off or vice versa).

Before repeating all these operations for IOs with the next priority level, the sample sets threat to sleep for an

amount of time specified in either the “Default Sleep Time” or the “Special Sleep Time” configuration

parameters (depending on whether the current priority level is the special priority level configured in the

“Special Priority” parameter), and then sends a STOPDT act message to stop IEC-104 data transfer and

disconnects from the target.

2.1.3. IEC-104 Protocol Implementation

Our analysis revealed that the code used in the sample to craft IEC-104 messages shows extensive

similarities with code in a public github repository. The repository contains a lightweight “C++ realization of

IEC-60870-5-104 for LPC1768+FreeRTOS+lwIP” and is maintained by Oleksandr Popovych, a Ukrainian

developer who describes himself as “AI Dealer”, “Machine Learning Evangelist” and “Deep Learning

Practitioner”.

By static analysis of the sample, we were able to identify 18 of the 23 functions defined in the repository for the

three C++ classes corresponding to IEC-104 layers (APCI, ASDU and APDU). Of these functions, 15 have the

exact same function signature as defined in the repository, three have function signatures with only marginal

differences (e.g., addition of a function argument) and 15 also have the exact same function body. The major

difference we identified is in the implementation of the APCI class, which in the sample was simplified by only

supporting management of one single Information Object per APCI PDU. Based on these observations, it is

reasonable to conclude the creators of Industroyer2 adapted the code shared by Popovych to fit their needs.

The table below reports a list of the functions defined in Popovych’s code, annotated with our findings on the

sample binary in terms of function presence, similarity of the function signature and similarity of the function

body.

Class Function Found in

Sample

Signature

Similarity

Body Similarity

APCI APCI() Yes Complete Complete

APCI ~APCI() Yes Complete Complete

APCI clear() Yes Complete Complete

APCI get() Yes Complete Complete

APCI set() Yes Minor (one unused

argument added)

Complete

APCI valid() Yes Complete Complete

ASDU ASDU() Yes Complete Complete

ASDU ~ASDU() Yes Complete Complete

https://github.com/ogvalt/iec104

Industroyer2 and INCONTROLLER 10

ASDU clear() Yes Complete Major (member

variables are

different)

ASDU get() Yes Complete Major (member

variables are

different)

ASDU set() Yes Minor (argument

data_length added)

Major (member

variables are

different)

ASDU addIO() No N/A N/A

ASDU valid() Yes Complete Complete

APDU APDU() Yes Complete Complete

APDU ~APDU() Yes Complete Complete

APDU clear() Yes Complete Complete

APDU get() Yes Complete Complete

APDU set() Yes Minor (one unused

argument added)

Complete

APDU valid() Yes Complete Complete

APDU addIO(int) No N/A N/A

APDU addIO(InformationObject) No N/A N/A

APDU setDUI() No N/A N/A

APDU setAPCI() No N/A N/A

The two snippets of code below show an example of the same function as defined in Popovych’s code (left)

and as decompiled from the sample (right). It is clear the code is identical once one factors out the artefacts

introduced by the C++ compiler.

Besides the code for serializing/deserializing IEC-104 messages, the sample includes functions for sending

and receiving the necessary IEC-104 messages. We could identify code supporting the following

functionalities:

• Send a TESTFR_act message (test connection activation) and process incoming messages

• Send a TESTFR_con message (test connection confirmation)

• Send a STARTDT_act message (start data transfer activation) and process incoming messages

Industroyer2 and INCONTROLLER 11

• Send a C_IC_NA_1_act message (interrogation command activation) and process incoming messages

• Send a C_IC_NA_1_act message (interrogation command activation) with CA set to the global address,

receive incoming messages and learn the CA reported in the received C_IC_NA_1_con message

(interrogation command confirmation)

• Send a C_SC_NA_1 act message (single command activation) or C_DC_NA_1_act message (double

command activation) and process incoming messages

• Send an S_FRAME to acknowledge the receipt of incoming I_FRAMEs

• Process incoming messages and:

o respond to TESTFR_act messages with TESTFR_con messages

o update the Receiver Sequence Number in case an I_FRAME is received

o acknowledge received I_FRAMEs by sending an S_FRAME with the updated receiver sequence

number

As can be inferred from the list above, the implemented subset of the IEC-104 protocol client-side functionality

is extremely limited and is directed at covering only the subset that is strictly necessary for the attack.

However, this choice led to an implementation that does not conform to the state machine and timeout

mechanisms defined in the IEC-104 standard. While this may not necessarily be a problem for interoperability

with permissive IEC-104 server implementations, such as those implemented by most of IEC-104 server

simulators freely downloadable from the internet, for servers with a stricter implementation this might result in

the malware failing to deliver the intended commands to the target.

This same implementation issue was previously observed in the original Industroyer/CrashOverride malware.

2.1.4. Dynamic Behavior

We confirm our findings about the operation logic of the sample by running the sample against an IEC-104

server simulator and capturing the traffic generated by the sample. The figure below shows the commands

sent by the sample to the target with IP address 192.168.122.2. After the general station interrogation

command, we can observe the eight double commands sent by the sample with position OFF, cause of

transmission 6 (activation), S/E bit set to Execute and qualifier set to 1 (short pulse), corresponding the eight

Information Objects defined in the configuration for this target.

2.1.5. Other Considerations

During the incident, additional malware samples were deployed: CaddyWiper, OrcShred, SoloShred, and

AwfulShred. These are wiper malwares designed for Windows, Linux and Solaris operating systems and used

to cause damage to the infected machines by wiping all the data, and to clean up the host-based indicators of

compromise.

It is still unknown how the attackers obtained initial access to the IT assets of the victim. According to CERT-

UA, CaddyWiper was distributed over the victim’s network using the Windows group policy mechanism (GPO)

https://www.youtube.com/watch?v=KTczBtb2ReU
https://cert.gov.ua/article/39518
https://cert.gov.ua/article/39518

Industroyer2 and INCONTROLLER 12

set through the POWERGAP powershell script. This script has also been used to schedule the execution of

CaddyWiper, which relied on ArguePatch1 loader to decrypt itself. (TailJump shellcode was used as well.) The

lateral movement between network segments of the victim was performed via SSH tunnels.

Multiple researchers agree that the attackers were deeply familiar with the victim’s network and the attack was

tailor-made rather than opportunistic. For example, Industroyer2 relies on a built-in hard-coded configuration

that lists the IP addresses of controlled stations, their TCP ports, ASDU addresses and specific commands to

be sent over the IEC-104 protocol. The fact that the IP addresses of these stations are located within entirely

different subnets (as found in several public Industroyer2 samples) suggests that the victim environment could

have improper network segmentation controls in place.

The Industroyer2 sample lacks any detection evasion mechanisms, such as control flow obfuscation or config

encryption, or privilege escalation capabilities. This serves as additional evidence of the “bespoke” nature of

the attack: The attackers could have had total control of the target environment and be aware of the exact

malware protection mechanisms deployed (or lack thereof). According to the timeline of the incident published

by the ESET researchers, CaddyWiper was scheduled to launch on the same compromised machine after the

Industroyer2 executable has had finished its task. Had the attack been successful, the researchers might not

have obtained the sample in the first place. All this evidence explains (at least in part) the lack of analysis

protection mechanisms within the Industroyer2 binary.

2.2. CISA AA22-103A: APT Cyber Tools Targeting ICS/SCADA Devices

(aka INCONTROLLER, aka PIPEDREAM)

On April 13, the Department of Energy, CISA, NSA and the FBI released a cybersecurity advisory about new

capabilities developed by APTs targeting industrial control systems. The toolkit described in the advisory

includes three tools that enable attackers to send instructions to or retrieve data from ICS devices using

industrial network protocols, such as OPC UA, Modbus (and its proprietary Schneider Modicon extension),

Codesys and Omron FINS.

The tools within the toolkit are named differently by different researchers but have the following functionality:

• Lazycargo: One of the tools exploits CVE-2020-15368, a vulnerability in the AsrDrv103.sys driver of the

RGB controller for AsRock PC motherboards. This tool installs and exploits the vulnerable driver on a

target system to achieve persistence and perform lateral movement after the initial compromise of

Windows-based engineering workstation and/or human-machine Interface (HMI) machines.

• Icecore/Dusttunnel: A tool that provides reconnaissance and command and control functionality.

• Codecall/Evilscholar: This tool is a framework that communicates over the Modbus protocol; it also

leverages Codesys automation software. The framework contains modules to scan, interact with and

attack at least three Schneider Electric programmable logic controllers (PLCs): M251, M258 and M221

Nano. The capabilities targeting these PLCs could possibly be extended against other Codesys-based

PLCs manufactured by other vendors.

• Omshell/Badomen: A framework that has capabilities for scanning and interacting with Omron Sysmac

NEX PLCs via HTTP, Telnet and Omron Fins protocols. It has capabilities for interacting with OMRON

servo drives used for precision motion control operations.

1 A legitimate component of IDA Pro used for remote debugging.

https://www.welivesecurity.com/2022/04/12/industroyer2-industroyer-reloaded/
https://www.welivesecurity.com/2022/04/12/industroyer2-industroyer-reloaded/
https://www.cisa.gov/uscert/ncas/alerts/aa22-103a
https://github.com/stong/CVE-2020-15368
https://hex-rays.com/ida-pro/

Industroyer2 and INCONTROLLER 13

• Tagrun/Mousehole: This tool is used for identifying Open Platform Communication Unified Architecture

(OPC UA) servers, as well as enumerating, reading and writing OPC structures and tags. It can be also

used for brute-forcing credentials.

Currently, only a sample of Lazycargo is available for public analysis. We found the sample

69296ca3575d9bc04ce0250d734d1a83c1348f5b6da756944933af0578bd41d2 on vx-underground and

analyzed it in depth.

2.2.1. Lazycargo Analysis

The sample is a binary executable that requires administrative privileges to run and expects one argument, as

shown in the figure below:

At first glance, the binary contains a lot of interesting information: We clearly see that there are some debug

symbols leftovers that suggest the binary may be an “exploit for the AsRock Driver”, that the file is likely to

have some embedded executable code in its .data section and that it uses a number of potentially malicious

Win32 API calls, as shown in the figure below.

https://www.vx-underground.org/

Industroyer2 and INCONTROLLER 14

Industroyer2 and INCONTROLLER 15

From the command line message above, it is obvious that the binary expects a path to an unsigned device

driver (a .sys file). The following disassembly fragment shows the beginning of the main routine of the sample

and confirms this.

Therefore, to examine the behavior of the binary further, we must provide a command line argument as

follows. In fact, this should be an unsigned driver, but we can get by with this argument.

When the path to a .sys file is provided, the sample will get the file handle using the OpenFile() function, read

its size of disk using GetFileSize() and read its contents into the memory using ReadFile().

https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-openfile
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-getfilesize
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-readfile

Industroyer2 and INCONTROLLER 16

Next, the sample creates an empty file “C:\AsRockDrv.sys” and writes into it some binary content located in its

.data section:

This binary content is a vulnerable AsRock driver, for which a publicly available exploit has been available for

quite some time (CVE-2020-15368). We encourage the reader to look at the original write-up to have a better

understanding of the various moving parts of the binary in question. However, this driver exploitation technique

is not new. Notice that the .data section also contains three other shellcode fragments. (More on that later.)

After the contents of the AsRock driver are written to the disk, the binary loads it as a service, initiates the

driver’s device and opens a file handle to it.

https://github.com/stong/CVE-2020-15368
https://github.com/stong/CVE-2020-15368
https://git.back.engineering/_xeroxz/vdm
https://git.back.engineering/_xeroxz/vdm

Industroyer2 and INCONTROLLER 17

Next, the binary copies a shellcode fragment located in its .data section into memory – we call it

“second_stage_shellcode” – and copies the contents of the .sys file provided as an argument into an

adjacent memory location.

Industroyer2 and INCONTROLLER 18

Then, the sample calls the “find_patch_address()” function that performs many things under the hood. In

particular, it exploits CVE-2020-15368 to read physical memory and to find an address of a function located

within the loaded AsRock driver: This function has a specific ioctl handler tied to it, and it can be invoked from

user-mode programs with DeviceIoControl() or NtDeviceIoControlFile() functions.

The two code snippets below provide an intuition on CVE-2020-15368 and how it has been leveraged in the

binary in question. In particular, the second snippet shows the approximate logic within the vulnerable AsRock

driver: It provides unrestricted physical memory read and write capabilities (including kernel space) to any

user-mode program. The AsRock driver developers have restricted access to these operations by accepting

only encrypted ioctl data. However, the AES key used for encryption/decryption is hardcoded, therefore

malware writers can easily circumvent that.

https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/creating-ioctl-requests-in-drivers
https://docs.microsoft.com/en-us/windows/win32/api/ioapiset/nf-ioapiset-deviceiocontrol
https://docs.microsoft.com/en-us/windows/win32/api/winternl/nf-winternl-ntdeviceiocontrolfile

Industroyer2 and INCONTROLLER 19

The “find_patch_address()” function obtains information about the physical memory by reading the

“HKLM\Hardware\ResourceMap\System Resources\Physical Memory” system registry key. Next, it

exploits the AsRock driver to read the physical memory pages and search for 160 bytes of assembly code

located in that memory (“original_asrock_function_fragment”). This assembly code fragment is the

beginning of one of the functions located within the AsRock driver itself – it is one of the unencrypted ioctl

handlers that can be reached with the I/O control code 0x22E858 (here, we call this function

“ioctl_22E858_handler()”):

https://www.remkoweijnen.nl/blog/2009/03/20/reading-physical-memory-size-from-the-registry/

Industroyer2 and INCONTROLLER 20

Below, we show the assembly snippet that illustrates the logic that searches for the physical memory address:

After the physical memory address of the AsRock ioctl handle of interest has been found, the binary outputs

the following message and passes this address further down its logic:

Another shellcode fragment located in the .data section of the binary (we call it “first_stage_shellcode”) is

used to overwrite the contents of the ioctl handler within the AsRock driver (the one discussed above). We will

explain the details of this fragment later. However, before the ioctl handler within the AsRock driver is

patched, the “first_stage_payload_shellcode” gets some adjustments:

Specifically, the total length of the .sys file (the argument to the binary) and the second stage shellcode gets

inserted into two places, and the virtual memory address of the second shellcode fragment gets inserted as

well. Once the first stage shellcode is adjusted, the binary exploits the AsRock driver again to write the

Industroyer2 and INCONTROLLER 21

shellcode into the physical memory at the location where the “ioctl_22E858_handler()” function of the

AsRock driver is loaded. Then it invokes the modified handler, executing the first stage shellcode within the

privileged process of the AsRock driver (calling the handler via the NtDeviceIoControlFile() function).

Immediately after, the “ioctl_22E858_handler()” contents are reverted back to the original code

(“original_asrock_function_fragment”) to ensure the stability of the system in case the ioctl handler is called

by other drivers/services.

The adjusted first stage shellcode is shown on the snippet below. When the patched

“ioctl_22E858_handler()” function is triggered, it allocates a memory pool of the size

“sizeof(second_stage_shellcode) + sizeof(argument .sys file)” using the function

ExAllocatePoolWithTag(); then, it copies the contents of the buffer that holds the second stage shellcode and

the .sys file from the process of the malware sample into that memory pool. Finally, it executes the second

stage shellcode with kernel privileges. It looks like this assembly fragment was written by hand.

https://docs.microsoft.com/en-us/windows/win32/api/winternl/nf-winternl-ntdeviceiocontrolfile
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-exallocatepoolwithtag

Industroyer2 and INCONTROLLER 22

The second stage shellcode consists of a common kernel shellcode pattern for resolving NT kernel API

addresses by hash (see here, for example) and functionality to load and invoke the argument-supplied

unsigned driver. While this unsigned driver is missing, it seems highly likely this is a kernel-level rootkit

component and possibly works in conjunction with the implant referred to as ICECORE by Mandiant and

DUSTTUNNEL by Dragos. The diagram below illustrates the simplified execution flow of the sample:

https://gist.github.com/rootbsd/3198b82ca587c293d4dd7f1652a8b9ef
https://www.mandiant.com/resources/incontroller-state-sponsored-ics-tool
https://hub.dragos.com/hubfs/116-Whitepapers/Dragos_ChernoviteWP_v2b.pdf?hsLang=en

Industroyer2 and INCONTROLLER 23

It is peculiar to see that while the malicious actors behind this tool were clearly inspired by the original proof-of-

concept exploit for CVE-2020-15368, there are some crucial differences between the original and the present

implementation. That the malicious actors managed to easily weaponize someone’s work is worrisome and

serves as another argument in favor of formal vulnerability disclosure and response practices.

2.2.2. Codecall/Evilscholar

According to the available reports, the PLCs possibly targeted by the Codecall toolset mostly fall within the

Schneider Electric Machine Expert product family, formerly called SoMachine. Machine Expert PLCs are

relatively low-cost PLCs used in machine automation for motion control, mechatronics, and motor and drive

management purposes.

The table below lists the reportedly targeted controllers and protocols in addition to vulnerabilities that have

been identified.

Controller Targeted

Protocols

Identified Vulnerabilities

M221 Machine

Expert

Discovery

(27126/UDP,

27127/UDP)

Modbus TCP

(502/TCP)

https://www.ndss-symposium.org/wp-

content/uploads/bar2019_74_Kalle_paper.pdf

https://www.osti.gov/servlets/purl/1808195

https://www.sciencedirect.com/science/article/pii/S2666281722000051

http://www.people.vcu.edu/~iahmed3/publications/ifip_sec_2019_attack.pdf

https://www.cisa.gov/uscert/ics/advisories/ICSA-17-089-02

https://www.se.com/ww/en/download/document/SEVD-2018-233-01/

https://www.se.com/ww/en/download/document/SEVD-2018-235-01/

https://www.se.com/ww/en/download/document/SEVD-2018-270-01/

https://www.se.com/ww/en/download/document/SEVD-2019-045-01/

https://www.se.com/ww/en/download/document/SEVD-2020-315-05/

M241

M251

Machine

Expert

Discovery

(27126/UDP,

27127/UDP)

Machine

Expert

CODESYS

(1740-

1743/UDP,

1105/TCP)

Modbus TCP

(502/TCP)

https://www.cisa.gov/uscert/ics/advisories/ICSA-17-089-02

https://download.schneider-electric.com/files?p_Doc_Ref=SEVD-2021-

130-05

https://www.se.com/ww/en/download/document/SEVD-2020-105-02/

https://www.se.com/ww/en/download/document/SEVD-2019-134-02/

M238 Modbus TCP

(via

TwidoPort

gateway

-

https://github.com/stong/CVE-2020-15368
https://github.com/stong/CVE-2020-15368
https://www.ndss-symposium.org/wp-content/uploads/bar2019_74_Kalle_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/bar2019_74_Kalle_paper.pdf
https://www.osti.gov/servlets/purl/1808195
https://www.sciencedirect.com/science/article/pii/S2666281722000051
http://www.people.vcu.edu/~iahmed3/publications/ifip_sec_2019_attack.pdf
https://www.cisa.gov/uscert/ics/advisories/ICSA-17-089-02
https://www.se.com/ww/en/download/document/SEVD-2018-233-01/
https://www.se.com/ww/en/download/document/SEVD-2018-235-01/
https://www.se.com/ww/en/download/document/SEVD-2018-270-01/
https://www.se.com/ww/en/download/document/SEVD-2019-045-01/
https://www.se.com/ww/en/download/document/SEVD-2020-315-05/
https://www.cisa.gov/uscert/ics/advisories/ICSA-17-089-02
https://download.schneider-electric.com/files?p_Doc_Ref=SEVD-2021-130-05
https://download.schneider-electric.com/files?p_Doc_Ref=SEVD-2021-130-05
https://www.se.com/ww/en/download/document/SEVD-2020-105-02/
https://www.se.com/ww/en/download/document/SEVD-2019-134-02/

Industroyer2 and INCONTROLLER 24

module)

(502/TCP)

M258 Machine

Expert

Discovery

(27126/UDP,

27127/UDP)

Machine

Expert

CODESYS

(1740-

1743/UDP,

1105/TCP)

Modbus TCP

(502/TCP)

https://www.se.com/ww/en/download/document/SEVD-2020-105-02/

https://www.se.com/ww/en/download/document/SEVD-2019-134-02/

LMC058

LMC078

Machine

Expert

Discovery

(27126/UDP,

27127/UDP)

Machine

Expert

CODESYS

(1740-

1743/UDP,

1105/TCP)

Modbus TCP

(502/TCP)

https://www.se.com/ww/en/download/document/SEVD-2019-134-02/

As shown in the table above, most likely because of its comparative affordability, the Machine Expert product

family has seen quite a bit of public security research, in particular the M221. This has resulted in a sizeable

body of information on the internals, proprietary protocols and uncovered vulnerabilities in these products that

an attacker could weaponize. According to prior reports, Codecall possesses at least the following capabilities

(and possibly more):

• Discover and identify Machine Expert PLCs over the network using the Discovery protocol

• Brute-force PLC passwords using CODESYS

• Using CODESYS functionality to enumerate, download, upload and delete files

• Sever legitimate connections to the PLC, possibly to facilitate credential capture

• Manipulating IP routing information

• Trigger a DoS on the PLC requiring a power cycle and configuration recovery

• Send Modbus commands to read/write registers, request IDs, etc.

Machine Expert Discovery

https://www.se.com/ww/en/download/document/SEVD-2020-105-02/
https://www.se.com/ww/en/download/document/SEVD-2019-134-02/
https://www.se.com/ww/en/download/document/SEVD-2019-134-02/

Industroyer2 and INCONTROLLER 25

The Machine Expert Discovery protocol is a proprietary Schneider Electric protocol for discovery, identification

and network configuration of Machine Expert PLCs. While the protocol is ostensibly encrypted, this is done

with a hardcoded key and a weak algorithm (as covered by CVE-2019-6820) allowing rogue clients to abuse

this protocol for discovery and configuration manipulation purposes.

CODESYS

CODESYS is one of the most popular IEC 61131-3 logic runtime environments and is used by dozens of

vendors across the world. Both its V2 and V3 incarnations and the myriad security issues have been well

documented by public security research. As such, attackers with capabilities for the CODESYS environment

and protocol could potentially target products by multiple vendors, meaning defenders will need to be aware of

any CODESYS-based assets in their inventories rather than simply focus on Machine Expert products.

Modbus

The Modbus protocol is one of the most ubiquitous and famously insecure-by-design OT protocols in

existence. Off-the-shelf capabilities to interact with Modbus can be found all over the internet and, as such, are

nothing special in and of themselves. The harder part of carrying out OT-oriented attacks leveraging Modbus

lies in understanding a given PLC’s internal Modbus map, which maps Modbus addresses to internal variables

and I/Os. Without this understanding, an attacker is forced to either guess, brute-force or infer this mapping

from long-term network traffic and operations surveillance. However, retrieving the PLC’s configuration through

CODESYS, as described above, will provide the attacker with these mappings.

Another item of interest is that the Machine Expert Basic series (which includes the M221), contrary to the

wider Machine Expert family, does not use the CODESYS protocol but instead uses a Machine Expert Basic

dialect of the proprietary Schneider Electric UMAS Modbus extension (function code 0x5A). While UMAS has

been the subject of quite some public security research and the Machine Expert Basic extension has not, there

still is some common functionality. As such, it seems interesting that no capabilities for this protocol appear to

have been integrated into Codecall. This could either be a result of the target set’s demands (focusing on

Machine Expert with the basic series being of lesser interest) or could point to capability modules that have not

yet been recovered.

2.2.3. Omshell/Badomen

According to the available reports, the devices possibly targeted by the Omshell toolset are related to machine

automation, including machine controllers from the NJ and NX series, servo drives, fieldbus couplers and

power supplies.

The table below lists the reportedly targeted devices and protocols, in addition to vulnerabilities that have been

identified.

Controller Targeted Protocols Identified Vulnerabilities

NJ501-1300 Omron FINS

(9600/TCP, 9600/UDP)

HTTP

(80/TCP)

Telnet

https://www.cisa.gov/uscert/ics/advisories/icsa-19-

346-03

https://ics-cert.kaspersky.com/publications/reports/2019/09/18/security-research-codesys-runtime-a-plc-control-framework-part-1/
https://www.youtube.com/watch?v=qFPqBG2VkxI
https://www.cisa.gov/uscert/ics/advisories/ICSA-13-011-01
https://ioactive.com/3s-softwares-codesys-insecure-by-design/
https://arxiv.org/pdf/1812.03478.pdf
https://pymodbus.readthedocs.io/en/3.0.0/
https://dl.acm.org/doi/abs/10.1145/3140241.3140254
https://dl.acm.org/doi/abs/10.1145/3140241.3140254
https://www.youtube-nocookie.com/embed/A_B69Rifu1g?rel=0
https://conference.hitb.org/hitbsecconf2021sin/materials/D1T2%20-%20Going%20Deeper%20into%20Schneider%20Modicon%20PAC%20Security%20-%20Gao%20Jian.pdf
https://medium.com/tenable-techblog/examining-crypto-and-bypassing-authentication-in-schneider-electric-plcs-m340-m580-f37cf9f3ff34
https://www.cisa.gov/uscert/ics/advisories/icsa-19-346-03
https://www.cisa.gov/uscert/ics/advisories/icsa-19-346-03

Industroyer2 and INCONTROLLER 26

NX1P2 Omron FINS

(9600/TCP, 9600/UDP)

HTTP

(80/TCP)

Telnet

-

NX-SL3300 - -

NX-ECC203 - -

R88D-1SN10F-

ECT

- -

S8VK - -

As shown in the table above, compared to the Schneider Electric Machine Expert or older Omron Cx family of

PLC, the NJ and NX series have not seen much public security research, indicating the attacker likely had to

invest significant efforts into developing capabilities for these platforms. According to prior reports, Omshell

possesses at least the following capabilities and possibly more:

• Scan for Omron PLCs using the FINS protocol

• Interact with Omron PLC web services using HTTP

• Enumerate and communicate with devices (e.g., servo drives or power supplies) nested behind PLCs

• Backup and restore Omron PLC configurations

• Wipe and reset Omron PLCs

• Activate telnet service on Omron PLCs and use it to upload and execute binaries

• Deploy an additional Omron PLC-native implant for additional fine-grained capabilities

Omron FINS

The Omron Factory Interface Network Service (FINS) is a proprietary but publicly well-documented protocol for

PLC communication and engineering operations among the popular Omron Cx and NJ/NX series. While this

protocol has some security features, these are typically not enabled and have historically suffered from bypass

flaws. The FINS protocol can be used for a wide array of potentially dangerous operations ranging from PLC

enumeration and discovery to starting and stopping the PLC, reading and writing logic and memory,

manipulating and deleting files, and wiping and resetting the PLC.

Device Nesting

The reported ability of Omshell to enumerate and interact with devices nested behind PLCs is of particularly

novel interest. Typically, PLCs control instruments or clusters of secondary PLCs via serial or industrial

Ethernet-based fieldbus networks nested behind them. These devices are typically not directly addressable by

attackers residing in IP-based OT networks if no pass-through protocol features are available. At most, they

can be controlled in a limited fashion through whatever variables are mapped and exposed by the master

PLCs.

An attacker seeking to achieve more complicated effects, including disabling safety systems, could possibly

need the ability to control these nested devices more directly, which would require them to take over the

master PLC acting as a bridge. The Omshell ability to achieve code execution on the PLC and deploy an

implant could hint at the desire to develop such fine-grained capabilities. Such implants would have to be

https://www.kepware.com/getattachment/7551f988-97df-426b-a00d-e8731a5b7607/omron-fins-ethernet-manual.pdf
https://github.com/wireshark/wireshark/blob/master/epan/dissectors/packet-omron-fins.c

Industroyer2 and INCONTROLLER 27

tailored to the particular PLC platform (in case of many NJ and NX series PLCs this seems to be a

combination of x86, QNX and/or Windows) and could persist for an indefinite amount of time due to the

complete lack of endpoint security measures, introspection or forensics capabilities on PLCs.

2.2.4. Tagrun/Mousehole

The third OT-oriented component of INCONTROLLER is an OPC UA toolkit referred to as Tagrun. This toolkit

is capable of identifying OPC UA servers, connecting to them using either default or attacker-supplied

credentials and enumerating OPC UA structures which include configurations, tags and control points. This

serves a potential dual purpose of discovery, reconnaissance and process comprehension on the one hand

and the ability to manipulate tag values to affect operations on the other.

3. IoCs

IoC Type Description

7062403bccacc7c0b84d27987b204777f6078319c3f4caa361581825c

1a94e87

File hash SHA256 hash of

the Industroyer2

sample from the

original incident

(CERT-UA)

ea16cb89129ab062843c84f6c6661750f18592b051549b265aaf834e1

00cd6fc

File hash SHA256 hash of

one of the

Industroyer2

samples (public

sources)

fc0e6f2effbfa287217b8930ab55b7a77bb86dbd923c0e81505

51627138c9caa

File hash SHA256 hash of

the CaddyWiper

sample from the

original incident

(CERT-UA)

43d07f28b7b699f43abd4f695596c15a90d772bfbd6029c8ee7

bc5859c2b0861

File hash SHA256 hash of

the OrcShred

sample from the

original incident

(CERT-UA)

bcdf0bd8142a4828c61e775686c9892d89893ed0f5093bdc70b

de3e48d04ab99

File hash SHA256 hash of

the AwfulShred

sample from the

original incident

(CERT-UA)

1724a0a3c9c73f4d8891f988b5035effce8d897ed42336a92e2

c9bc7d9ee7f5a

File hash SHA256 hash of

the TailJump

sample from the

original incident

(CERT-UA)

https://dl.acm.org/doi/abs/10.1145/3140241.3140254

Industroyer2 and INCONTROLLER 28

cda9310715b7a12f47b7c134260d5ff9200c147fc1d05f030e5

07e57e3582327

File hash SHA256 hash of

the ArguePatch

sample from the

original incident

(CERT-UA)

69296ca3575d9bc04ce0250d734d1a83c1348f5b6da75694493

3af0578bd41d2
File hash SHA256 hash of a

Lazycargo sample

from vx-

underground

C:\Users\User1\Desktop\dev_projects\SignSploit1\x64

\Release\AsrDrv_exploit.pdb
String Path to the debug

symbols found in a

Lazycargo sample

HKLM\Hardware\ResourceMap\System Resources\Physical

Memory
Windows

registry key

A Windows registry

key accessed by a

Lazycargo sample

“PService_PPD.exe” String Name of the

service/executable

to be stopped and

renamed in the

infected machine

“D:\OIK\DevCounter” String Path where the

service/executable

to be stopped and

renamed is located

91.245.255[.]243 IP address Potentially, an IP

address related to

the initial access

(according to

CERT-UA)

195.230.23[.]19

IP address Potentially, an IP

address related to

the initial access

(according to

CERT-UA)

C:\Users\peremoga.exe JRIBDFIMCQAKVBBP

C:\Users\pa1.pay

reg save HKLM\SYSTEM C:\Users\Public\sys.reg /y

reg save HKLM\SECURITY C:\Users\Public\sec.reg /y

reg save HKLM\SAM C:\Users\Public\sam.reg /y

\\%DOMAIN%\sysvol\%DOMAIN%\Policies\%GPO

ID%\Machine\zrada.exe

\\%DOMAIN%\sysvol\%DOMAIN%\Policies\%GPO

ID%\Machine\pa.pay

C:\Windows\System32\rundll32.exe

C:\windows\System32\comsvcs.dll MiniDump %PID%

C:\Users\Public\mem.dmp full

Host-based

indicators of

compromise

Host-based

indicators of

compromise from

the original incident

(CERT-UA)

Industroyer2 and INCONTROLLER 29

C:\Windows\Temp\link.ps1

C:\Users\peremoga.exe

C:\Users\pa1.pay

C:\Dell\vatt.exe

C:\Dell\pa.pay

C:\Dell\108_100.exe

C:\tmp\cdel.exe

4. Mitigation Recommendations
CISA recommends to:

• Isolate ICS/SCADA systems and networks from corporate networks and the internet. Limit network

connections to only specifically allowed management and engineering workstations.

• Enforce multifactor authentication for remote access to ICS networks and devices whenever possible.

Change passwords to ICS/SCADA devices on a consistent schedule. Only use admin accounts when

required for specific tasks.

• Leverage an OT monitoring solution to alert on malicious indicators and behaviors, watching internal

systems and communications for known hostile actions.

• Investigate symptoms of denial of service or delays in communications processing as signs of potential

malicious activity.

• Monitor systems for loading of unusual drivers, particularly for ASRock driver if no ASRock driver is

normally used on the system.

• Maintain backups for faster recovery after disruptive attacks.

More detailed recommendations are available on CISA alerts AA22-110A, AA22-103A and AA22-083A.

Windows driver developers should also follow standard security guidelines to prevent exploitation.

5. References
• https://www.welivesecurity.com/2022/04/12/industroyer2-industroyer-reloaded/

• https://pylos.co/2022/04/23/industroyer2-in-perspective/

• https://www.securonix.com/blog/industroyer2-caddywiper-targeting-ukrainian-power-grid/

• https://www.emanueledelucia.net/industroyer2-the-ics-capable-malware-re-emerges-in-order-to-cause-

critical-services-disruption/

• https://www.mandiant.com/resources/industroyer-v2-old-malware-new-tricks

• https://www.netresec.com/?page=Blog&month=2022-04&post=Industroyer2-IEC-104-Analysis

• https://www.nozominetworks.com/blog/industroyer2-nozomi-networks-labs-analyzes-the-iec-104-payload/

• https://www.cisa.gov/uscert/ncas/alerts/aa22-103a

• https://www.mandiant.com/resources/incontroller-state-sponsored-ics-tool

• https://www.dragos.com/blog/industry-news/chernovite-pipedream-malware-targeting-industrial-

control-systems/

• https://download.schneider-electric.com/files?p_Doc_Ref=SESB-2022-01

• https://customers.codesys.com/index.php?eID=dumpFile&t=f&f=17113&token=0c173ece4a2f48bd3

0d6a67fa2f495119d5caefc&download

https://www.cisa.gov/uscert/ncas/alerts/aa22-110a
https://www.cisa.gov/uscert/ncas/alerts/aa22-103a
https://www.cisa.gov/uscert/ncas/alerts/aa22-083a
https://docs.microsoft.com/en-us/windows-hardware/drivers/driversecurity/driver-security-checklist
https://www.welivesecurity.com/2022/04/12/industroyer2-industroyer-reloaded/
https://pylos.co/2022/04/23/industroyer2-in-perspective/
https://www.securonix.com/blog/industroyer2-caddywiper-targeting-ukrainian-power-grid/
https://www.emanueledelucia.net/industroyer2-the-ics-capable-malware-re-emerges-in-order-to-cause-critical-services-disruption/
https://www.emanueledelucia.net/industroyer2-the-ics-capable-malware-re-emerges-in-order-to-cause-critical-services-disruption/
https://www.mandiant.com/resources/industroyer-v2-old-malware-new-tricks
https://www.netresec.com/?page=Blog&month=2022-04&post=Industroyer2-IEC-104-Analysis
https://www.nozominetworks.com/blog/industroyer2-nozomi-networks-labs-analyzes-the-iec-104-payload/
https://www.cisa.gov/uscert/ncas/alerts/aa22-103a
https://www.mandiant.com/resources/incontroller-state-sponsored-ics-tool
https://www.dragos.com/blog/industry-news/chernovite-pipedream-malware-targeting-industrial-control-systems/
https://www.dragos.com/blog/industry-news/chernovite-pipedream-malware-targeting-industrial-control-systems/
https://download.schneider-electric.com/files?p_Doc_Ref=SESB-2022-01
https://customers.codesys.com/index.php?eID=dumpFile&t=f&f=17113&token=0c173ece4a2f48bd30d6a67fa2f495119d5caefc&download
https://customers.codesys.com/index.php?eID=dumpFile&t=f&f=17113&token=0c173ece4a2f48bd30d6a67fa2f495119d5caefc&download

Industroyer2 and INCONTROLLER 30

© 2022 Forescout Technologies, Inc. All rights reserved. Forescout Technologies, Inc. is a Delaware

corporation. A list of our trademarks and patents is available at www.forescout.com/company/legal/intellectual-

property-patents-trademarks. Other brands, products or service names may be trademarks or service marks of

their respective owners.

	1. Executive Summary
	2. Technical Analysis
	2.1. Industroyer2
	2.1.1. Configuration
	2.1.2. Logic of Operation
	2.1.3. IEC-104 Protocol Implementation
	2.1.4. Dynamic Behavior
	2.1.5. Other Considerations

	2.2. CISA AA22-103A: APT Cyber Tools Targeting ICS/SCADA Devices (aka INCONTROLLER, aka PIPEDREAM)
	2.2.1. Lazycargo Analysis
	2.2.2. Codecall/Evilscholar
	2.2.3. Omshell/Badomen
	2.2.4. Tagrun/Mousehole

	3. IoCs
	4. Mitigation Recommendations
	5. References

