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1. Executive Summary 
Industroyer2 and INCONTROLLER, also known as PIPEDREAM, are the newest examples of ICS-specific 

malware and were disclosed to the public almost simultaneously on April 12 and 13, 2022, respectively.  

 

Industroyer2 leverages OS-specific wipers and a dedicated module to communicate over the IEC-104 

industrial protocol. INCONTROLLER is a full toolkit containing modules to send instructions to or retrieve data 

from ICS devices using industrial network protocols, such as OPC UA, Modbus, CODESYS, Machine Expert 

Discovery and Omron FINS. Additionally, Industroyer2 has a highly targeted configuration, while 

INCONTROLLER is much more reusable across different targets. 

 

ICS-specific malware is still very rare when compared to commodity malware, such as ransomware or banking 

trojans. Industroyer2 and INCONTROLLER follow previous-known examples, such as Stuxnet, Havex, 

BlackEnergy2, Industroyer and TRITON, shown in the timeline figure below.  

 

 

Both Industroyer2 and INCONTROLLER were caught before causing physical disruption. Industroyer2 is 

believed to have been developed and deployed by the Sandworm APT, linked to the Russian GRU, which was 

behind the original attacks on the Ukrainian power grid in 2015 and 2016. The Industroyer2 incident follows 

recent activity against the APT in 2022, such as the disruption of the Cyclops Blink botnet. There is still no 

conclusive evidence about the actors behind INCONTROLLER, their motives or objectives. 

 

Both new malwares show that abusing often insecure-by-design native capabilities of OT equipment continues 

to be the preferred modus operandi of real-world attackers. Vedere Labs recently disclosed a set of 56 

insecure-by-design vulnerabilities in OT equipment called OT:ICEFALL, which included Omron controllers that 

were targeted by INCONTROLLER. The emergence of new vulnerabilities and new malware exploiting the 

insecure-by-design nature of OT supports the need for robust OT-aware network monitoring and deep packet 

inspection capabilities.  

 

This briefing presents the most detailed (to date) public technical analysis of Industroyer2 and 

INCONTROLLER (Section 2), a list of IoCs extracted from those samples and other shared intelligence 

(Section 3) and recommended mitigations (Section 4).  

 

Although there have been previous reports about both malware families analyzed in this research, we present 

the following new contributions: 

• A functionality in Industroyer2 to discover the target’s Common Address of ASDU. Despite not being used 

given the hardcoded configuration of our sample, it might have been a tool used in previous 

reconnaissance stages to gather information about the target (Section 2.1.2) 

• An analysis of the similarity of the IEC-104 implementation in Industroyer that reveals it is very probably a 

modified version of a publicly available implementation (Section 2.1.3) 

• The most detailed public description so far of Lazycargo, a part of INCONTROLLER, which became 

publicly available (Section 2.2.1)   

https://www.welivesecurity.com/2022/04/12/industroyer2-industroyer-reloaded/
https://www.mandiant.com/resources/incontroller-state-sponsored-ics-tool
https://malpedia.caad.fkie.fraunhofer.de/details/win.stuxnet
https://malpedia.caad.fkie.fraunhofer.de/details/win.havex_rat
https://malpedia.caad.fkie.fraunhofer.de/details/win.blackenergy
https://malpedia.caad.fkie.fraunhofer.de/details/win.industroyer
https://malpedia.caad.fkie.fraunhofer.de/details/win.triton
https://malpedia.caad.fkie.fraunhofer.de/actor/sandworm
https://www.forescout.com/resources/monitoring-cyber-activities-connected-to-the-russian-ukrainian-conflict/
https://www.darkreading.com/vulnerabilities-threats/russian-gru-botnet-disrupted-in-fbi-led-operation
https://www.forescout.com/research-labs/ot-icefall/
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2. Technical Analysis 
 

2.1. Industroyer2 

ESET researchers responded to a cyber incident affecting an energy provider in Ukraine. This response 

resulted in the discovery of a new variant of the Industroyer malware, which ESET together with CERT-UA 

named Industroyer2. Industroyer is an infamous piece of malware that was used in 2016 by the Sandworm 

APT group to cut the power in Ukraine. 

 

Several researchers pointed out that the new sample bears a lot of similarities with the original Industroyer. 

However, while the original version supported several industrial network protocols, the version used in the new 

incident supports only the IEC-104 protocol. The sample tests connectivity to a list of hardcoded control 

stations and sends sets of hardcoded commands over the IEC-104 protocol, setting specific Information Object 

Addresses (IOA) for specific Application Service Data Unit (ASDU) addresses to either the “ON” or “OFF” 

state. As ESET researchers pointed out, this may lead to power cuts within the targeted ICS systems.  

 

We have analyzed the IEC-104 sample with SHA-1 fdeb96bc3d4ab32ef826e7e53f4fe1c72e580379 and 

presumed filename 40_115.exe. Our static analysis revealed details of the hardcoded configuration and logic 

workflow of the sample. 

 

2.1.1.  Configuration 

The configuration is built as an array of strings. Every array item specifies the configuration for a single IEC-

104 target server and is specified as a space-separated list of tokens. Tokens can be logically grouped in a 

header, followed by an optional list of Information Object (IO)-specific parameters. The format of the header is 

reported in the table below. 

 

Name Optional Description 

Target IP No IP address of the target IEC-104 server. 

Target Port No TCP port of the target IEC-104 server. 

Common Address No Common Address of ASDU associated with the target IEC-104 

server. 

Operational Mode No If set to 0, the sample will derive which IOs to interact with from 

the optional list of IO parameters that follows the header. If set 

to 1, the sample will derive which IOs to interact with from the 

optional IOA range information that follows this token. 

IOA Range Start Yes Information Object Address range start. This token is only 

specified if Operational Mode is 1. 

IOA Range End Yes Information Object Address range end. This token is only 

specified if Operational Mode is 1. 

Extended Config No If set to 1, the configuration header is extended with 9 extra 

tokens. 

https://www.welivesecurity.com/2022/04/12/industroyer2-industroyer-reloaded/
https://cert.gov.ua/article/39518
https://www.ipcomm.de/protocol/IEC104/en/sheet.html
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Boolean Flag Yes Unused. This token is only specified if Extended Config is 1. 

Target Executable Yes Executable name of the process to kill before attempting 

connection with the target IEC-104 server. This token is only 

specified if Extended Config is 1. 

Rename Executable Yes If set to 1, the executable previously specified will also be 

renamed to prevent watchdog restarts. This token is only 

specified if Extended Config is 1. 

Target Executable 

Folder 

Yes Path to the folder where the target executable is stored. This 

token is only specified if Extended Config is 1. 

Interaction Delay  Yes Delay (in minutes) before a connection is attempted to the 

target IEC-104 server after killing the target executable. This 

token is only specified if Extended Config is 1. 

Default Sleep Time Yes Delay (in seconds) applied after sending commands with a 

certain priority level. This token is only specified if Extended 

Config is 1. 

Special Priority Yes Priority level for configuring a different sleep time. This token is 

only specified if Extended Config is 1. 

Special Sleep Time 

Yes Delay (in seconds) applied after sending commands with priority 

level specified above. This token is only specified if Extended 

Config is 1. 

Boolean Flag Yes Unused. This token is only specified if Extended Config is 1. 

Default IO State No If set to 1, the state of single and double IOs will be set to On, 

otherwise the state will be set to Off. 

Additional Inverted IO 

State 

No If set to 1, the sample will send additional commands for each 

configured IO inverting the default state. 

IO Count No Number of IO-specific parameter groups following the header. 

 

The format of each IO-specific parameter group is reported in the table below. 

Name Optional Description 

IOA No Address of the Information Object. 

Type ID No Type of IEC-104 command used for setting the IO value. 

Possible values are 0 for double command IOs (C_DC_NA_1) 

and 1 for single command IOs (C_SC_NA_1). 

SBO No If set to 1, the sample will use the Select Before Operate 

paradigm to set the IO value. 

Invert Default State No If set to 0, the state of the IO will be set to the default value 

specified in the header. If set to 1, the state of the IO will be set 

to the inverse of the default value. 

Priority No Priority of commands for this IO. The sample will send 

commands to the target IEC-104 server processing IOs with 

lower to higher priority. 

Index No Defines the order by which commands for this IO will be 

processed as compared to the ones with the same priority. 
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Using this knowledge, it is possible to examine the configuration hardcoded in this sample. The configuration 

header is displayed in the table below. 

Field Target 1 Target 2 Target 3 

Target IP 10.82.40.105 192.168.122.2 192.168.121.2 

Target Port 2404 2404 2404 

Common Address 3 2 1 

Operational Mode 0 0 0 

IOA Range Start N/A N/A N/A 

IOA Range End N/A N/A N/A 

Extended Config 1 1 1 

Boolean Flag 1 1 1 

Target Executable PService_PPD.exe PService_PPD.exe PService_PPD.exe 

Rename Executable 1 1 1 

Target Executable 

Folder 

D:\OIK\DevCounter D:\OIK\DevCounter D:\OIK\DevCounter 

Interaction Delay  0 0 0 

Default Sleep Time 1 1 1 

Special Priority 0 0 0 

Special Sleep Time 0 0 0 

Boolean Flag 1 1 1 

Default IO State 0 0 0 

Invert IO Value 0 0 0 

IO Count 44 8 16 

 

The first IO-specific group of parameters for each configuration item is reported in the table below as an 

example. 

Field Target 1 Target 2 Target 3 

IOA 130202 1104 1258 

Type ID 1 (C_SC_NA_1) 0 (C_DC_NA_1) 0 (C_DC_NA_1) 

SBO 0 (Direct Operate) 0 (Direct Operate) 0 (Direct Operate) 

Invert Default State 1 0 0 

Priority 1 1 1 

Index 1 1 1 
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2.1.2.  Logic of Operation 

The Industroyer2 sample is meant to be executed in the machine acting as IEC-104 controlling station for its 

targets. The workflow below displays a high-level representation of the sample’s logic. 

 

For each configuration item, the sample parses the configuration string and creates a data structure that holds 

configuration parameters, as well as runtime parameters.  

 

Killing running services and renaming executable 

It then kills the process with executable name “PServiceControl.exe”, as well as the process with executable 

name “PService_PDD.exe”, which is also renamed as “PService_PDD.exe.MZ”. Killing the 

“PService_PDD.exe” service causes the interruption of any existing communication with target IEC-104 

servers, which usually supports at most one active connection at a time. Having interrupted existing 

connections, Industroyer2 is free to connect to the targets. Renaming the service is a possible measure to 

prevent automatic service restarts. This behavior suggests some ties to the BlackEnergy malware, which also 

killed a service called “PService_PDD.exe” before execution. 

 

After this initial phase, the sample spawns a thread responsible for interaction with the target. At first, the 

thread is set to sleep for a time specified by the Interaction Delay parameter. This delay could be needed to 

ensure the target realizes the existing connection with the master is interrupted and becomes ready to accept 

new connections. 

 

The thread then loops over the priority levels configured for all IOs, from lower to higher priority levels. 

Target connection 

https://malpedia.caad.fkie.fraunhofer.de/details/win.blackenergy
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The sample connects to the target using the IP and port specified in the configuration. Upon success, it first 

sends a TESTFR act IEC-104 message, followed by a STARTDT act message, which starts the data transfer 

between the controlling station and the controlled station. 

 

Once the target is connected and data transfer is enabled, the sample verifies if the Common Address of 

ASDU (CA) for the target is known in the configuration.  

 

Discovery of the target’s Common Address of ASDU 

If the target’s CA unknown (i.e., set to -1 in the configuration), the sample sends a general interrogation 

command activation message (C_IC_NA_1 act) with CA set to 65535, which is a special address defined in 

the standard as “global” for broadcast purposes. The target IEC-104 server will respond with a general 

interrogation command activation confirmation message containing its true CA. In this way, the sample can 

learn the CA of the target server. After learning the CA of the target, the sample sends a STOPDT act 

message to stop IEC-104 data transfer and disconnects from the target. 

 

To the best of our knowledge, this discovery functionality was not documented in previous technical reports 

and, despite not being used given the hardcoded configuration of our sample, it might have been a tool used in 

previous reconnaissance stages to gather information about the target(s). 

 

Changing the position of configured IOs 

If the target’s CA is known, the sample sends a general interrogation command activation message 

(C_IC_NA_1 act). 

 

In case the configuration for all IOs with a certain priority level excludes the use of the Select Before Operate 

(SBO) paradigm, the sample first generates for all IOs with that priority either single command             

(C_SC_NA_1 act) or double command (C_DC_NA_1 act) activation messages (depending on the 

configuration) with the Select/Execute bit set to Execute, and then sends messages in batches of data of 128 

bytes max. We notice that the thread executing these operations is put to sleep for a fixed amount of time (one 

second) after generating the command corresponding to a certain IO, regardless of whether commands are 

being sent to the target or just buffered locally. We could not find a meaningful explanation for this behavior.  

 

In case at least one of the IOs with the current priority level is configured to use the SBO paradigm, the sample 

does not buffer commands. Instead, it iterates over all configured IOs and directly sends either single 

command (C_SC_NA_1 act) or double command (C_DC_NA_1 act) activation messages (depending on the 

configuration). In case the configuration specifies to use SBO, the sample first sends a single or double 

command with the Select/Execute bit set to Select. In both cases, the sample always sends the single or 

double command with the Select/Execute bit set to Execute. 

 

The parameters of single or double commands that the sample sends to the target are set as follows: 

• Cause of Transmission: hardcoded to 6 (activation) 

• Originator Address: hardcoded to 0 

• Common Address of ASDU: as specified in the “Common Address” configuration parameter 

• Information Object Address: as specified in the “IOA” configuration parameter 

• Qualifier: hardcoded to 2 (short pulse) 

• Select/Execute bit: according to the logic described above 

• Single/Double Command: initially set according to the “Default IO State” configuration parameter and 

possibly inverted according to IO’s “Invert Default State” configuration parameter 
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In case the IO’s configuration parameter “Invert Default State” is set to true, the sample sends the 

single/double commands once more by temporarily inverting the value of the “Default IO State” configuration 

parameter. This causes flipping the position of the targeted single or double Information Objects (from On to 

Off or vice versa). 

 

Before repeating all these operations for IOs with the next priority level, the sample sets threat to sleep for an 

amount of time specified in either the “Default Sleep Time” or the “Special Sleep Time” configuration 

parameters (depending on whether the current priority level is the special priority level configured in the 

“Special Priority” parameter), and then sends a STOPDT act message to stop IEC-104 data transfer and 

disconnects from the target. 

 

2.1.3.  IEC-104 Protocol Implementation 

Our analysis revealed that the code used in the sample to craft IEC-104 messages shows extensive 

similarities with code in a public github repository. The repository contains a lightweight “C++ realization of 

IEC-60870-5-104 for LPC1768+FreeRTOS+lwIP” and is maintained by Oleksandr Popovych, a Ukrainian 

developer who describes himself as “AI Dealer”, “Machine Learning Evangelist” and “Deep Learning 

Practitioner”. 

 

By static analysis of the sample, we were able to identify 18 of the 23 functions defined in the repository for the 

three C++ classes corresponding to IEC-104 layers (APCI, ASDU and APDU). Of these functions, 15 have the 

exact same function signature as defined in the repository, three have function signatures with only marginal 

differences (e.g., addition of a function argument) and 15 also have the exact same function body. The major 

difference we identified is in the implementation of the APCI class, which in the sample was simplified by only 

supporting management of one single Information Object per APCI PDU. Based on these observations, it is 

reasonable to conclude the creators of Industroyer2 adapted the code shared by Popovych to fit their needs. 

 

The table below reports a list of the functions defined in Popovych’s code, annotated with our findings on the 

sample binary in terms of function presence, similarity of the function signature and similarity of the function 

body.  

Class Function Found in 

Sample 

Signature 

Similarity 

Body Similarity 

APCI APCI() Yes Complete Complete 

APCI ~APCI() Yes Complete Complete 

APCI clear() Yes Complete Complete 

APCI get() Yes Complete Complete 

APCI set() Yes Minor (one unused 

argument added) 

Complete 

APCI valid() Yes Complete Complete 

ASDU ASDU() Yes Complete Complete 

ASDU ~ASDU() Yes Complete Complete 

https://github.com/ogvalt/iec104
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ASDU clear() Yes Complete Major (member 

variables are 

different) 

ASDU get() Yes Complete Major (member 

variables are 

different) 

ASDU set() Yes Minor (argument 

data_length added) 

Major (member 

variables are 

different) 

ASDU addIO() No N/A N/A 

ASDU valid() Yes Complete Complete 

APDU APDU() Yes Complete Complete 

APDU ~APDU() Yes Complete Complete 

APDU clear() Yes Complete Complete 

APDU get() Yes Complete Complete 

APDU set() Yes Minor (one unused 

argument added) 

Complete 

APDU valid() Yes Complete Complete 

APDU addIO(int) No N/A N/A 

APDU addIO(InformationObject) No N/A N/A 

APDU setDUI() No N/A N/A 

APDU setAPCI() No N/A N/A 

 

The two snippets of code below show an example of the same function as defined in Popovych’s code (left) 

and as decompiled from the sample (right). It is clear the code is identical once one factors out the artefacts 

introduced by the C++ compiler. 

 

Besides the code for serializing/deserializing IEC-104 messages, the sample includes functions for sending 

and receiving the necessary IEC-104 messages. We could identify code supporting the following 

functionalities: 

• Send a TESTFR_act message (test connection activation) and process incoming messages 

• Send a TESTFR_con message (test connection confirmation) 

• Send a STARTDT_act message (start data transfer activation) and process incoming messages 
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• Send a C_IC_NA_1_act message (interrogation command activation) and process incoming messages 

• Send a C_IC_NA_1_act message (interrogation command activation) with CA set to the global address, 

receive incoming messages and learn the CA reported in the received C_IC_NA_1_con message 

(interrogation command confirmation) 

• Send a C_SC_NA_1 act message (single command activation) or C_DC_NA_1_act message (double 

command activation) and process incoming messages 

• Send an S_FRAME to acknowledge the receipt of incoming I_FRAMEs 

• Process incoming messages and:  

o respond to TESTFR_act messages with TESTFR_con messages 

o update the Receiver Sequence Number in case an I_FRAME is received 

o acknowledge received I_FRAMEs by sending an S_FRAME with the updated receiver sequence 

number 

 

As can be inferred from the list above, the implemented subset of the IEC-104 protocol client-side functionality 

is extremely limited and is directed at covering only the subset that is strictly necessary for the attack. 

However, this choice led to an implementation that does not conform to the state machine and timeout 

mechanisms defined in the IEC-104 standard. While this may not necessarily be a problem for interoperability 

with permissive IEC-104 server implementations, such as those implemented by most of IEC-104 server 

simulators freely downloadable from the internet, for servers with a stricter implementation this might result in 

the malware failing to deliver the intended commands to the target. 

 

This same implementation issue was previously observed in the original Industroyer/CrashOverride malware. 

 

2.1.4.  Dynamic Behavior 

We confirm our findings about the operation logic of the sample by running the sample against an IEC-104 

server simulator and capturing the traffic generated by the sample. The figure below shows the commands 

sent by the sample to the target with IP address 192.168.122.2. After the general station interrogation 

command, we can observe the eight double commands sent by the sample with position OFF, cause of 

transmission 6 (activation), S/E bit set to Execute and qualifier set to 1 (short pulse), corresponding the eight 

Information Objects defined in the configuration for this target. 

 

 

 

 

 

 

 

 

 

2.1.5.  Other Considerations 

During the incident, additional malware samples were deployed: CaddyWiper, OrcShred, SoloShred, and 

AwfulShred. These are wiper malwares designed for Windows, Linux and Solaris operating systems and used 

to cause damage to the infected machines by wiping all the data, and to clean up the host-based indicators of 

compromise.  

 

It is still unknown how the attackers obtained initial access to the IT assets of the victim. According to CERT-

UA, CaddyWiper was distributed over the victim’s network using the Windows group policy mechanism (GPO) 

https://www.youtube.com/watch?v=KTczBtb2ReU
https://cert.gov.ua/article/39518
https://cert.gov.ua/article/39518
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set through the POWERGAP powershell script. This script has also been used to schedule the execution of 

CaddyWiper, which relied on ArguePatch1 loader to decrypt itself. (TailJump shellcode was used as well.) The 

lateral movement between network segments of the victim was performed via SSH tunnels. 

 

Multiple researchers agree that the attackers were deeply familiar with the victim’s network and the attack was 

tailor-made rather than opportunistic. For example, Industroyer2 relies on a built-in hard-coded configuration 

that lists the IP addresses of controlled stations, their TCP ports, ASDU addresses and specific commands to 

be sent over the IEC-104 protocol. The fact that the IP addresses of these stations are located within entirely 

different subnets (as found in several public Industroyer2 samples) suggests that the victim environment could 

have improper network segmentation controls in place. 

 

The Industroyer2 sample lacks any detection evasion mechanisms, such as control flow obfuscation or config 

encryption, or privilege escalation capabilities. This serves as additional evidence of the “bespoke” nature of 

the attack: The attackers could have had total control of the target environment and be aware of the exact 

malware protection mechanisms deployed (or lack thereof). According to the timeline of the incident published 

by the ESET researchers, CaddyWiper was scheduled to launch on the same compromised machine after the 

Industroyer2 executable has had finished its task. Had the attack been successful, the researchers might not 

have obtained the sample in the first place. All this evidence explains (at least in part) the lack of analysis 

protection mechanisms within the Industroyer2 binary. 

 

2.2. CISA AA22-103A: APT Cyber Tools Targeting ICS/SCADA Devices 

(aka INCONTROLLER, aka PIPEDREAM) 

On April 13, the Department of Energy, CISA, NSA and the FBI released a cybersecurity advisory about new  

capabilities developed by APTs targeting industrial control systems. The toolkit described in the advisory 

includes three tools that enable attackers to send instructions to or retrieve data from ICS devices using 

industrial network protocols, such as OPC UA, Modbus (and its proprietary Schneider Modicon extension), 

Codesys and Omron FINS.  

 

The tools within the toolkit are named differently by different researchers but have the following functionality: 

• Lazycargo: One of the tools exploits CVE-2020-15368, a vulnerability in the AsrDrv103.sys driver of the 

RGB controller for AsRock PC motherboards. This tool installs and exploits the vulnerable driver on a 

target system to achieve persistence and perform lateral movement after the initial compromise of 

Windows-based engineering workstation and/or human-machine Interface (HMI) machines. 

• Icecore/Dusttunnel: A tool that provides reconnaissance and command and control functionality. 

• Codecall/Evilscholar: This tool is a framework that communicates over the Modbus protocol; it also 

leverages Codesys automation software. The framework contains modules to scan, interact with and 

attack at least three Schneider Electric programmable logic controllers (PLCs): M251, M258 and M221 

Nano. The capabilities targeting these PLCs could possibly be extended against other Codesys-based 

PLCs manufactured by other vendors. 

• Omshell/Badomen: A framework that has capabilities for scanning and interacting with Omron Sysmac 

NEX PLCs via HTTP, Telnet and Omron Fins protocols. It has capabilities for interacting with OMRON 

servo drives used for precision motion control operations. 

 

 

 

 
1 A legitimate component of IDA Pro used for remote debugging. 

https://www.welivesecurity.com/2022/04/12/industroyer2-industroyer-reloaded/
https://www.welivesecurity.com/2022/04/12/industroyer2-industroyer-reloaded/
https://www.cisa.gov/uscert/ncas/alerts/aa22-103a
https://github.com/stong/CVE-2020-15368
https://hex-rays.com/ida-pro/
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• Tagrun/Mousehole: This tool is used for identifying Open Platform Communication Unified Architecture 

(OPC UA) servers, as well as enumerating, reading and writing OPC structures and tags. It can be also 

used for brute-forcing credentials. 

 

Currently, only a sample of Lazycargo is available for public analysis. We found the sample 

69296ca3575d9bc04ce0250d734d1a83c1348f5b6da756944933af0578bd41d2 on vx-underground and 

analyzed it in depth. 

 

2.2.1. Lazycargo Analysis 

The sample is a binary executable that requires administrative privileges to run and expects one argument, as 

shown in the figure below: 

 

At first glance, the binary contains a lot of interesting information: We clearly see that there are some debug 

symbols leftovers that suggest the binary may be an “exploit for the AsRock Driver”, that the file is likely to 

have some embedded executable code in its .data section and that it uses a number of potentially malicious 

Win32 API calls, as shown in the figure below. 

 

https://www.vx-underground.org/
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Industroyer2 and INCONTROLLER 15 

From the command line message above, it is obvious that the binary expects a path to an unsigned device 

driver (a .sys file). The following disassembly fragment shows the beginning of the main routine of the sample 

and confirms this.  

 

Therefore, to examine the behavior of the binary further, we must provide a command line argument as 

follows. In fact, this should be an unsigned driver, but we can get by with this argument.  

 

When the path to a .sys file is provided, the sample will get the file handle using the OpenFile() function, read 

its size of disk using GetFileSize() and read its contents into the memory using ReadFile(). 

 

https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-openfile
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-getfilesize
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-readfile
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Next, the sample creates an empty file “C:\AsRockDrv.sys” and writes into it some binary content located in its 

.data section: 

 

This binary content is a vulnerable AsRock driver, for which a publicly available exploit has been available for 

quite some time (CVE-2020-15368). We encourage the reader to look at the original write-up to have a better 

understanding of the various moving parts of the binary in question. However, this driver exploitation technique 

is not new. Notice that the .data section also contains three other shellcode fragments. (More on that later.)  

 

After the contents of the AsRock driver are written to the disk, the binary loads it as a service, initiates the 

driver’s device and opens a file handle to it. 

https://github.com/stong/CVE-2020-15368
https://github.com/stong/CVE-2020-15368
https://git.back.engineering/_xeroxz/vdm
https://git.back.engineering/_xeroxz/vdm
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Next, the binary copies a shellcode fragment located in its .data section into memory  – we call it 

“second_stage_shellcode” – and copies the contents of the .sys file provided as an argument into an 

adjacent memory location. 
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Then, the sample calls the “find_patch_address()” function that performs many things under the hood. In 

particular, it exploits CVE-2020-15368 to read physical memory and to find an address of a function located 

within the loaded AsRock driver: This function has a specific ioctl handler tied to it, and it can be invoked from 

user-mode programs with DeviceIoControl() or NtDeviceIoControlFile() functions. 

 

The two code snippets below provide an intuition on CVE-2020-15368 and how it has been leveraged in the 

binary in question. In particular, the second snippet shows the approximate logic within the vulnerable AsRock 

driver: It provides unrestricted physical memory read and write capabilities (including kernel space) to any 

user-mode program. The AsRock driver developers have restricted access to these operations by accepting 

only encrypted ioctl data. However, the AES key used for encryption/decryption is hardcoded, therefore 

malware writers can easily circumvent that. 

 

https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/creating-ioctl-requests-in-drivers
https://docs.microsoft.com/en-us/windows/win32/api/ioapiset/nf-ioapiset-deviceiocontrol
https://docs.microsoft.com/en-us/windows/win32/api/winternl/nf-winternl-ntdeviceiocontrolfile
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The “find_patch_address()” function obtains information about the physical memory by reading the 

“HKLM\Hardware\ResourceMap\System Resources\Physical Memory” system registry key. Next, it 

exploits the AsRock driver to read the physical memory pages and search for 160 bytes of assembly code 

located in that memory (“original_asrock_function_fragment”). This assembly code fragment is the 

beginning of one of the functions located within the AsRock driver itself – it is one of the unencrypted ioctl 

handlers that can be reached with the I/O control code 0x22E858 (here, we call this function 

“ioctl_22E858_handler()”): 

 

 

https://www.remkoweijnen.nl/blog/2009/03/20/reading-physical-memory-size-from-the-registry/
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Below, we show the assembly snippet that illustrates the logic that searches for the physical memory address: 

 

 

After the physical memory address of the AsRock ioctl handle of interest has been found, the binary outputs 

the following message and passes this address further down its logic:  

 

Another shellcode fragment located in the .data section of the binary (we call it “first_stage_shellcode”) is 

used to overwrite the contents of the ioctl handler within the AsRock driver (the one discussed above). We will 

explain the details of this fragment later. However, before the ioctl handler within the AsRock driver is 

patched, the “first_stage_payload_shellcode” gets some adjustments: 

 

Specifically, the total length of the .sys file (the argument to the binary) and the second stage shellcode gets 

inserted into two places, and the virtual memory address of the second shellcode fragment gets inserted as 

well. Once the first stage shellcode is adjusted, the binary exploits the AsRock driver again to write the 
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shellcode into the physical memory at the location where the “ioctl_22E858_handler()” function of the 

AsRock driver is loaded. Then it invokes the modified handler, executing the first stage shellcode within the 

privileged process of the AsRock driver (calling the handler via the NtDeviceIoControlFile() function). 

Immediately after, the “ioctl_22E858_handler()” contents are reverted back to the original code 

(“original_asrock_function_fragment”) to ensure the stability of the system in case the ioctl handler is called 

by other drivers/services. 

 

 

The adjusted first stage shellcode is shown on the snippet below. When the patched 

“ioctl_22E858_handler()” function is triggered, it allocates a memory pool of the size 

“sizeof(second_stage_shellcode) + sizeof(argument .sys file)” using the function 

ExAllocatePoolWithTag(); then, it copies the contents of the buffer that holds the second stage shellcode and 

the .sys file from the process of the malware sample into that memory pool. Finally, it executes the second 

stage shellcode with kernel privileges. It looks like this assembly fragment was written by hand. 

 

 

 

 

 

 

 

 

https://docs.microsoft.com/en-us/windows/win32/api/winternl/nf-winternl-ntdeviceiocontrolfile
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-exallocatepoolwithtag
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The second stage shellcode consists of a common kernel shellcode pattern for resolving NT kernel API 

addresses by hash (see here, for example) and functionality to load and invoke the argument-supplied 

unsigned driver. While this unsigned driver is missing, it seems highly likely this is a kernel-level rootkit 

component and possibly works in conjunction with the implant referred to as ICECORE by Mandiant and 

DUSTTUNNEL by Dragos. The diagram below illustrates the simplified execution flow of the sample: 

https://gist.github.com/rootbsd/3198b82ca587c293d4dd7f1652a8b9ef
https://www.mandiant.com/resources/incontroller-state-sponsored-ics-tool
https://hub.dragos.com/hubfs/116-Whitepapers/Dragos_ChernoviteWP_v2b.pdf?hsLang=en
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It is peculiar to see that while the malicious actors behind this tool were clearly inspired by the original proof-of-

concept exploit for CVE-2020-15368, there are some crucial differences between the original and the present 

implementation. That the malicious actors managed to easily weaponize someone’s work is worrisome and 

serves as another argument in favor of formal vulnerability disclosure and response practices. 

 

2.2.2. Codecall/Evilscholar 

According to the available reports, the PLCs possibly targeted by the Codecall toolset mostly fall within the 

Schneider Electric Machine Expert product family, formerly called SoMachine. Machine Expert PLCs are 

relatively low-cost PLCs used in machine automation for motion control, mechatronics, and motor and drive 

management purposes.  

 

The table below lists the reportedly targeted controllers and protocols in addition to vulnerabilities that have 

been identified. 

Controller Targeted 

Protocols 

Identified Vulnerabilities 

M221 Machine 

Expert 

Discovery 

(27126/UDP, 

27127/UDP) 

 

Modbus TCP 

(502/TCP) 

https://www.ndss-symposium.org/wp-

content/uploads/bar2019_74_Kalle_paper.pdf   

https://www.osti.gov/servlets/purl/1808195   

https://www.sciencedirect.com/science/article/pii/S2666281722000051   

http://www.people.vcu.edu/~iahmed3/publications/ifip_sec_2019_attack.pdf  

https://www.cisa.gov/uscert/ics/advisories/ICSA-17-089-02  

https://www.se.com/ww/en/download/document/SEVD-2018-233-01/   

https://www.se.com/ww/en/download/document/SEVD-2018-235-01/   

https://www.se.com/ww/en/download/document/SEVD-2018-270-01/   

https://www.se.com/ww/en/download/document/SEVD-2019-045-01/   

https://www.se.com/ww/en/download/document/SEVD-2020-315-05/  

M241 

M251 

Machine 

Expert 

Discovery 

(27126/UDP, 

27127/UDP) 

 

Machine 

Expert 

CODESYS 

(1740-

1743/UDP, 

1105/TCP) 

 

Modbus TCP 

(502/TCP) 

https://www.cisa.gov/uscert/ics/advisories/ICSA-17-089-02  

https://download.schneider-electric.com/files?p_Doc_Ref=SEVD-2021-

130-05  

https://www.se.com/ww/en/download/document/SEVD-2020-105-02/   

https://www.se.com/ww/en/download/document/SEVD-2019-134-02/  

M238 Modbus TCP 

(via 

TwidoPort 

gateway 

- 

https://github.com/stong/CVE-2020-15368
https://github.com/stong/CVE-2020-15368
https://www.ndss-symposium.org/wp-content/uploads/bar2019_74_Kalle_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/bar2019_74_Kalle_paper.pdf
https://www.osti.gov/servlets/purl/1808195
https://www.sciencedirect.com/science/article/pii/S2666281722000051
http://www.people.vcu.edu/~iahmed3/publications/ifip_sec_2019_attack.pdf
https://www.cisa.gov/uscert/ics/advisories/ICSA-17-089-02
https://www.se.com/ww/en/download/document/SEVD-2018-233-01/
https://www.se.com/ww/en/download/document/SEVD-2018-235-01/
https://www.se.com/ww/en/download/document/SEVD-2018-270-01/
https://www.se.com/ww/en/download/document/SEVD-2019-045-01/
https://www.se.com/ww/en/download/document/SEVD-2020-315-05/
https://www.cisa.gov/uscert/ics/advisories/ICSA-17-089-02
https://download.schneider-electric.com/files?p_Doc_Ref=SEVD-2021-130-05
https://download.schneider-electric.com/files?p_Doc_Ref=SEVD-2021-130-05
https://www.se.com/ww/en/download/document/SEVD-2020-105-02/
https://www.se.com/ww/en/download/document/SEVD-2019-134-02/
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module) 

(502/TCP) 

M258 Machine 

Expert 

Discovery 

(27126/UDP, 

27127/UDP) 

 

Machine 

Expert 

CODESYS 

(1740-

1743/UDP, 

1105/TCP) 

 

Modbus TCP 

(502/TCP) 

https://www.se.com/ww/en/download/document/SEVD-2020-105-02/  

https://www.se.com/ww/en/download/document/SEVD-2019-134-02/  

LMC058 

LMC078 

Machine 

Expert 

Discovery 

(27126/UDP, 

27127/UDP) 

 

Machine 

Expert 

CODESYS 

(1740-

1743/UDP, 

1105/TCP) 

 

Modbus TCP 

(502/TCP) 

https://www.se.com/ww/en/download/document/SEVD-2019-134-02/  

 

As shown in the table above, most likely because of its comparative affordability, the Machine Expert product 

family has seen quite a bit of public security research, in particular the M221. This has resulted in a sizeable 

body of information on the internals, proprietary protocols and uncovered vulnerabilities in these products that 

an attacker could weaponize. According to prior reports, Codecall possesses at least the following capabilities 

(and possibly more): 

• Discover and identify Machine Expert PLCs over the network using the Discovery protocol 

• Brute-force PLC passwords using CODESYS 

• Using CODESYS functionality to enumerate, download, upload and delete files 

• Sever legitimate connections to the PLC, possibly to facilitate credential capture 

• Manipulating IP routing information 

• Trigger a DoS on the PLC requiring a power cycle and configuration recovery 

• Send Modbus commands to read/write registers, request IDs, etc. 

 

Machine Expert Discovery 

https://www.se.com/ww/en/download/document/SEVD-2020-105-02/
https://www.se.com/ww/en/download/document/SEVD-2019-134-02/
https://www.se.com/ww/en/download/document/SEVD-2019-134-02/
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The Machine Expert Discovery protocol is a proprietary Schneider Electric protocol for discovery, identification 

and network configuration of Machine Expert PLCs. While the protocol is ostensibly encrypted, this is done 

with a hardcoded key and a weak algorithm (as covered by CVE-2019-6820) allowing rogue clients to abuse 

this protocol for discovery and configuration manipulation purposes. 

 

CODESYS 

CODESYS is one of the most popular IEC 61131-3 logic runtime environments and is used by dozens of 

vendors across the world. Both its V2 and V3 incarnations and the myriad security issues have been well 

documented by public security research. As such, attackers with capabilities for the CODESYS environment 

and protocol could potentially target products by multiple vendors, meaning defenders will need to be aware of 

any CODESYS-based assets in their inventories rather than simply focus on Machine Expert products. 

 

Modbus 

The Modbus protocol is one of the most ubiquitous and famously insecure-by-design OT protocols in 

existence. Off-the-shelf capabilities to interact with Modbus can be found all over the internet and, as such, are 

nothing special in and of themselves. The harder part of carrying out OT-oriented attacks leveraging Modbus 

lies in understanding a given PLC’s internal Modbus map, which maps Modbus addresses to internal variables 

and I/Os. Without this understanding, an attacker is forced to either guess, brute-force or infer this mapping 

from long-term network traffic and operations surveillance. However, retrieving the PLC’s configuration through 

CODESYS, as described above, will provide the attacker with these mappings.  

 

Another item of interest is that the Machine Expert Basic series (which includes the M221), contrary to the 

wider Machine Expert family, does not use the CODESYS protocol but instead uses a Machine Expert Basic 

dialect of the proprietary Schneider Electric UMAS Modbus extension (function code 0x5A). While UMAS has 

been the subject of quite some public security research and the Machine Expert Basic extension has not, there 

still is some common functionality. As such, it seems interesting that no capabilities for this protocol appear to 

have been integrated into Codecall. This could either be a result of the target set’s demands (focusing on 

Machine Expert with the basic series being of lesser interest) or could point to capability modules that have not 

yet been recovered. 

 

2.2.3. Omshell/Badomen 

According to the available reports, the devices possibly targeted by the Omshell toolset are related to machine 

automation, including machine controllers from the NJ and NX series, servo drives, fieldbus couplers and 

power supplies.  

 

The table below lists the reportedly targeted devices and protocols, in addition to vulnerabilities that have been 

identified. 

 

Controller Targeted Protocols Identified Vulnerabilities 

NJ501-1300 Omron FINS 

(9600/TCP, 9600/UDP) 

 

HTTP 

(80/TCP) 

 

Telnet 

https://www.cisa.gov/uscert/ics/advisories/icsa-19-

346-03  

https://ics-cert.kaspersky.com/publications/reports/2019/09/18/security-research-codesys-runtime-a-plc-control-framework-part-1/
https://www.youtube.com/watch?v=qFPqBG2VkxI
https://www.cisa.gov/uscert/ics/advisories/ICSA-13-011-01
https://ioactive.com/3s-softwares-codesys-insecure-by-design/
https://arxiv.org/pdf/1812.03478.pdf
https://pymodbus.readthedocs.io/en/3.0.0/
https://dl.acm.org/doi/abs/10.1145/3140241.3140254
https://dl.acm.org/doi/abs/10.1145/3140241.3140254
https://www.youtube-nocookie.com/embed/A_B69Rifu1g?rel=0
https://conference.hitb.org/hitbsecconf2021sin/materials/D1T2%20-%20Going%20Deeper%20into%20Schneider%20Modicon%20PAC%20Security%20-%20Gao%20Jian.pdf
https://medium.com/tenable-techblog/examining-crypto-and-bypassing-authentication-in-schneider-electric-plcs-m340-m580-f37cf9f3ff34
https://www.cisa.gov/uscert/ics/advisories/icsa-19-346-03
https://www.cisa.gov/uscert/ics/advisories/icsa-19-346-03


 

Industroyer2 and INCONTROLLER 26 

NX1P2 Omron FINS 

(9600/TCP, 9600/UDP) 

 

HTTP 

(80/TCP) 

 

Telnet 

- 

NX-SL3300 - - 

NX-ECC203 - - 

R88D-1SN10F-

ECT 

- - 

S8VK - - 

 

As shown in the table above, compared to the Schneider Electric Machine Expert or older Omron Cx family of 

PLC, the NJ and NX series have not seen much public security research, indicating the attacker likely had to 

invest significant efforts into developing capabilities for these platforms. According to prior reports, Omshell 

possesses at least the following capabilities and possibly more: 

• Scan for Omron PLCs using the FINS protocol 

• Interact with Omron PLC web services using HTTP 

• Enumerate and communicate with devices (e.g., servo drives or power supplies) nested behind PLCs 

• Backup and restore Omron PLC configurations 

• Wipe and reset Omron PLCs 

• Activate telnet service on Omron PLCs and use it to upload and execute binaries 

• Deploy an additional Omron PLC-native implant for additional fine-grained capabilities 

 

Omron FINS 

The Omron Factory Interface Network Service (FINS) is a proprietary but publicly well-documented protocol for 

PLC communication and engineering operations among the popular Omron Cx and NJ/NX series. While this 

protocol has some security features, these are typically not enabled and have historically suffered from bypass 

flaws. The FINS protocol can be used for a wide array of potentially dangerous operations ranging from PLC 

enumeration and discovery to starting and stopping the PLC, reading and writing logic and memory, 

manipulating and deleting files, and wiping and resetting the PLC. 

 

Device Nesting 

The reported ability of Omshell to enumerate and interact with devices nested behind PLCs is of particularly 

novel interest. Typically, PLCs control instruments or clusters of secondary PLCs via serial or industrial 

Ethernet-based fieldbus networks nested behind them. These devices are typically not directly addressable by 

attackers residing in IP-based OT networks if no pass-through protocol features are available. At most, they 

can be controlled in a limited fashion through whatever variables are mapped and exposed by the master 

PLCs. 

 

An attacker seeking to achieve more complicated effects, including disabling safety systems, could possibly 

need the ability to control these nested devices more directly, which would require them to take over the 

master PLC acting as a bridge. The Omshell ability to achieve code execution on the PLC and deploy an 

implant could hint at the desire to develop such fine-grained capabilities. Such implants would have to be 

https://www.kepware.com/getattachment/7551f988-97df-426b-a00d-e8731a5b7607/omron-fins-ethernet-manual.pdf
https://github.com/wireshark/wireshark/blob/master/epan/dissectors/packet-omron-fins.c
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tailored to the particular PLC platform (in case of many NJ and NX series PLCs this seems to be a 

combination of x86, QNX and/or Windows) and could persist for an indefinite amount of time due to the 

complete lack of endpoint security measures, introspection or forensics capabilities on PLCs. 

 

2.2.4. Tagrun/Mousehole 

The third OT-oriented component of INCONTROLLER is an OPC UA toolkit referred to as Tagrun. This toolkit 

is capable of identifying OPC UA servers, connecting to them using either default or attacker-supplied 

credentials and enumerating OPC UA structures which include configurations, tags and control points. This 

serves a potential dual purpose of discovery, reconnaissance and process comprehension on the one hand 

and the ability to manipulate tag values to affect operations on the other. 

3. IoCs 

IoC Type Description 

7062403bccacc7c0b84d27987b204777f6078319c3f4caa361581825c

1a94e87  

 

File hash SHA256 hash of 

the Industroyer2 

sample from the 

original incident 

(CERT-UA) 

ea16cb89129ab062843c84f6c6661750f18592b051549b265aaf834e1

00cd6fc 

File hash SHA256 hash of 

one of the 

Industroyer2 

samples (public 

sources) 

fc0e6f2effbfa287217b8930ab55b7a77bb86dbd923c0e81505

51627138c9caa  

 

File hash SHA256 hash of 

the CaddyWiper 

sample from the 

original incident 

(CERT-UA) 

43d07f28b7b699f43abd4f695596c15a90d772bfbd6029c8ee7

bc5859c2b0861  

 

File hash SHA256 hash of 

the OrcShred 

sample from the 

original incident 

(CERT-UA) 

bcdf0bd8142a4828c61e775686c9892d89893ed0f5093bdc70b

de3e48d04ab99  

 

File hash SHA256 hash of 

the AwfulShred 

sample from the 

original incident 

(CERT-UA) 

1724a0a3c9c73f4d8891f988b5035effce8d897ed42336a92e2

c9bc7d9ee7f5a  

 

File hash SHA256 hash of 

the TailJump 

sample from the 

original incident 

(CERT-UA) 

https://dl.acm.org/doi/abs/10.1145/3140241.3140254
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cda9310715b7a12f47b7c134260d5ff9200c147fc1d05f030e5

07e57e3582327  

 

File hash SHA256 hash of 

the ArguePatch 

sample from the 

original incident 

(CERT-UA) 

69296ca3575d9bc04ce0250d734d1a83c1348f5b6da75694493

3af0578bd41d2 
File hash SHA256 hash of  a 

Lazycargo sample 

from vx-

underground 

C:\Users\User1\Desktop\dev_projects\SignSploit1\x64

\Release\AsrDrv_exploit.pdb 
String Path to the debug 

symbols found in a 

Lazycargo sample 

HKLM\Hardware\ResourceMap\System Resources\Physical 

Memory 
Windows 

registry key 

A Windows registry 

key accessed by a 

Lazycargo sample 

“PService_PPD.exe” String Name of the 

service/executable 

to be stopped and 

renamed in the 

infected machine 

“D:\OIK\DevCounter” String Path where the 

service/executable 

to be stopped and 

renamed is located 

91.245.255[.]243 IP address Potentially, an IP 

address related to 

the initial access 

(according to 

CERT-UA) 

195.230.23[.]19 

 
IP address Potentially, an IP 

address related to 

the initial access 

(according to 

CERT-UA) 

C:\Users\peremoga.exe JRIBDFIMCQAKVBBP 

C:\Users\pa1.pay 

reg save HKLM\SYSTEM C:\Users\Public\sys.reg /y 

reg save HKLM\SECURITY C:\Users\Public\sec.reg /y 

reg save HKLM\SAM C:\Users\Public\sam.reg /y 

\\%DOMAIN%\sysvol\%DOMAIN%\Policies\%GPO 

ID%\Machine\zrada.exe 

\\%DOMAIN%\sysvol\%DOMAIN%\Policies\%GPO 

ID%\Machine\pa.pay 

C:\Windows\System32\rundll32.exe 

C:\windows\System32\comsvcs.dll MiniDump %PID% 

C:\Users\Public\mem.dmp full 

Host-based 

indicators of 

compromise 

Host-based 

indicators of 

compromise from 

the original incident 

(CERT-UA) 



 

Industroyer2 and INCONTROLLER 29 

C:\Windows\Temp\link.ps1 

C:\Users\peremoga.exe 

C:\Users\pa1.pay 

C:\Dell\vatt.exe 

C:\Dell\pa.pay 

C:\Dell\108_100.exe 

C:\tmp\cdel.exe 

 

 

4. Mitigation Recommendations 
CISA recommends to: 

• Isolate ICS/SCADA systems and networks from corporate networks and the internet. Limit network 

connections to only specifically allowed management and engineering workstations. 

• Enforce multifactor authentication for remote access to ICS networks and devices whenever possible. 

Change passwords to ICS/SCADA devices on a consistent schedule. Only use admin accounts when 

required for specific tasks. 

• Leverage an OT monitoring solution to alert on malicious indicators and behaviors, watching internal 

systems and communications for known hostile actions.  

• Investigate symptoms of denial of service or delays in communications processing as signs of potential 

malicious activity. 

• Monitor systems for loading of unusual drivers, particularly for ASRock driver if no ASRock driver is 

normally used on the system. 

• Maintain backups for faster recovery after disruptive attacks. 

 

More detailed recommendations are available on CISA alerts AA22-110A, AA22-103A and AA22-083A. 

Windows driver developers should also follow standard security guidelines to prevent exploitation. 
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