() VEDERE LABS

Analysis of an ALPHV
Incident

Breaking Down the Complexity of the Most
Sophisticated Ransomware

Contents

R (Yo U111V IR U - Y PR 3
A =Yoo g To= LY = 1] SRR 4
2.1. Initial Access via SONICWall SRA FIr@WAIlccooviiiiieiieiee e 4
2.2, VMWAre ESXi RANSOMWAIEueiiiiiiiieiiet ettt e ettt s e sare e s n e e e sme e e sseeesme e e snneesre e e nreeennneenes 4
2.2.1. L@V =T oI oT=T o Fo Y o TR PT PP TR 5
2.2.2. Access token and CONfig EXITACHIONc.uuuiiiie e e e s s e e e e s s st re e e e e e e s nnneneees 7
2.2.3. File encryption and everything related t0 itcoccuiiiiie i e 9
2.2.4. ESXi COMMEANTS ...ttt ettt h e b e e ek e e sh b e e sab e e e be e e be e e nbneesabeesnneesnneas 14
0T8T PP TP 15

4, Mitigation RECOMMENUALIONSciiiiiiiiee e ettt e e e e e e e e e e e e s s e e e e et s e teteeeaeeeessstaaeeaeessaastsaeeeeessaasssraneeeeessnnes 16
RETEIEINCES ...ttt bt e e et e ot oo a et e e st e e e b e e e e e e e e et e e e r e e e e e nres 16

<)FORESCOUT ALPHV 2

1. Executive Summary

This briefing is the result of an analysis of files and tools used by an affiliate of the ALPHV ransomware group
during an attack on a VMware ESXi environment. The ransomware was deployed on March 17, 2022, and the
incident involved two distinct exploitations: penetrating an Internet-exposed SonicWall firewall to gain initial
access to the network (step 1 in the figure below) and then moving to and encrypting a VMware ESXi virtual farm
(step 2).

S }{__,.f‘.. r.l

Fe ?’ | (/]

Lsers

Attacker
((=T1)| sonicwall
SRA

i
v2 v

ESXi Servers

ALPHYV, also known as Black Cat and Noberus, is a Ransomware-as-a-Service gang first discovered in
November 2021. They have hit more than 50 organizations and are distinguished for the following reasons:

e Using a ransomware written in Rust. This is part of a trend of attackers moving from C/C++ to other
languages such as Golang, Rust, DLang and Nim. The use of a different language helps to avoid
detection and makes malware analysis more difficult due to the lack of analysis tools.

e Using a binary payload that is created for each specific target. This binary includes a config file that
contains information about the target environment. This step also helps to avoid detection and makes file
hash IoCs less usable, since each new binary will be slightly different from the previous one.

e Supporting Windows and Linux variants, including specific capabilities for VMware ESXi hosts (such as
stopping/deleting virtual machines and deleting snapshots).

Previous reports have noticed that although the group is relatively new, it was probably created by former
members of other gangs, with the possibility of it being a rebranding of BlackMatter, a successor of the infamous
REvil and DarkSide groups. Their preference for attacking network infrastructure devices and hosts with exposed
RDP has also been documented.

This briefing presents a technical analysis of the incident focusing on the initial access via SonicWall SRA
(Section 2.1) and the ALPHV ransomware sample deployed at an ESXi server (Section 2.2). From this analysis,
we extract indicators of compromise (Section 3) and mitigation recommendations (Section 4) to help network
defenders to detect and mitigate attacks from ALPHV and other similar ransomware groups.

ALPHYV became widely known as “the most sophisticated ransomware of 2021.” New findings detailed in this
report break down the malware’s sophisticated behavior and present ways to avoid damage, including:

<)FORESCOUT ALPHV 3

https://malpedia.caad.fkie.fraunhofer.de/details/win.blackcat
https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/noberus-blackcat-alphv-rust-ransomware
https://blogs.blackberry.com/en/2021/07/old-dogs-new-tricks-attackers-adopt-exotic-programming-languages
https://blogs.blackberry.com/en/2021/07/old-dogs-new-tricks-attackers-adopt-exotic-programming-languages
https://www.varonis.com/blog/alphv-blackcat-ransomware
https://krebsonsecurity.com/2022/01/who-wrote-the-alphv-blackcat-ransomware-strain/

e The description of how to extract the config file embedded in the malware, which contains information that
can be used in incident response, such as harvested credentials or virtual machines spared from
encryption (Section 2.2.2).

e The most detailed analysis of the encryption behavior of ALPHV, including the description of a previously
unreported communication protocol used to distribute encryption between multiple instances of the
malware. This is the first time we have observed this behavior in a ransomware, once again showing
ALPHV’s ingenuity (Section 2.2.3).

e An error-handling bug in the malware that allows to prevent encryption on Linux targets by creating a
dummy esxcli executable (Section 2.2.4).

2. Technical Analysis

2.1. Initial Access via SonicWall SRA Firewall

ALPHV’s affiliates use of network infrastructure devices for initial access is well known. In this incident, we believe
the adversary leveraged CVE-2019-7481, an SQL injection vulnerability affecting Secure Remote Access (SRA)
4600 devices, to harvest credentials and gain initial access to the SonicWall. The actions performed lead us to
believe that reconnaissance was performed prior to the infection on March 17, 2022.

After initial access, the adversary used a Bulgarian IP address of 78.128.113.10 and hostname of “ip-113-
10.4vendeta.com” to download and install SonicWall’s Virtual Assist module. The Virtual Assist app is traditionally
used for basic operations, secure remote access, and file transfer between a technician and a customer. The IP
address is from a shared hosting pool belonging to RACKWEB-NET which leads us to believe this is a burner IP
address.

The adversary was able to execute code that waited for a legitimate user to connect and then hijacked the
existing session. The adversary was able to change the password of the account and propagated into the ESXi
farm to launch the ransomware attack.

2.2. VMware ESXi Ransomware

After gaining access to the ESXi servers, the adversary managed to deploy the ransomware payload. After that
operation, most of the log files were encrypted, but the shell history was kept intact. From the shell history, we
were able to immediately understand four things:
e The adversary manually launched commands at the target. This is evidenced by typos found during the
execution of commands, as shown below

e The adversary probably had a Cyrillic keyboard layout installed, which is consistent with the Bulgarian IP
address used for initial access. This is evidenced by one of those typos containing a Cyrillic character.
These kinds of typos are common when switching between alphabets

<) FORESCOUT ALPHV 4

https://nvd.nist.gov/vuln/detail/CVE-2019-7481

e The unique access token used to run the malware binaries (/tmp/32 and /tmp/64) was left in the history.

e The attackers attempted to launch several instances of the malware sample at the same time. As the
malware is designed to distribute file encryption tasks by communicating to its various instances over
local sockets, this makes sense (we detail this behavior in Section 2.2.3). However, since the attackers
did not use the “--propagated” command line option, this functionality would not work.

In possession of the access token, we were able to manually analyze the ransomware with several goals:
understand the overall behavior of the sample, extract the embedded config file, desribe the file encryption
functionality, and understand the OS-specific commands that the sample executes.

2.2.1. Overall behavior

Our sample (SHA256 hash is 0ea5dfd5682892d6d84c9775f89faad0c3c8ecce89dfbba010a61a87b258969¢) is
compiled to run on any modern x64 Linux system. It contains many compiled-in Rust libraries, as well as glibc
code. The debug symbols are stripped and some of the content of the malware is encrypted. This version of the
ALPHV malware has been created to target ESXi hypervisor systems.

Please note that all the binary offsets given in the subsections below may only be true for this specific
sample. Please also note that we do not show full disassembly listings since they can be quite lengthy,
instead we show only fragments.

The malware executable has an extensive set of command line options shown below:

<) FORESCOUT ALPHY

5

https://www.vmware.com/nl/products/esxi-and-esx.html

The executable requires a proper access token (the —access-token parameter) to function. It must be run

follows:

as

If no valid access token is provided, the malware will display the “Invalid config” error and will not execute any
malicious functionality. This access token should be known to the attacker only, and it is used to derive the AES-
128 key for decrypting the internal config of the malware. We will detail this in the Section 2.2.2.

The malware supports logging via the -v. command line option, which is quite handy for understanding its behavior.

Here is how the logging output looks like:

):55:45 MASTER [INFO]
MASTER [INFO]
MASTER [INFO]
MASTER [INFO]
MASTER [INFO]
MASTER [INFO]
MASTER [INFO]
MASTER [INFO]
MASTER [INFO]
MASTER [INFO]
MASTER [INFO]
MASTER [INFO]
MASTER [INFO]
MASTER [INFO]
MASTER [INFO]
MASTER [INFO]
MASTER [INFO]
MASTER [INFO]
MASTER [INFO]
MASTER [INFO]
MASTER [INFO]
MASTER [INFO]
MASTER [INFO]
MASTER [INFO]
MASTER [INFO]
MASTER [INFO]
MASTER [INFO]
MASTER [INFO]
MASTER [INFO]
MASTER [INFO]
MASTER [INFO]
MASTER [INFO]
MASTER [INFO]
MASTER [INFO]

<) FORESCOUT

Supervisor
Discoverer
Starting File Unlockers
Starting File Pro sing Pipeline
pipeline: :chunk_workers_supervisor: spawned worke
er_pool: aw _file dispatchers=2
_worker_pool: spawned_chunk_work_infastructure=2
ing Other In
: Starting Cluster Service
C ing to Clus
This is a Child Process
Starting Platform
Pre Loop
Main loop
erer: Recv Path -»> fho */Downloads/
luster: client=2485355475715894174
discoverer: Traversing -> /home/u
discoverer: Testing -> /home/user
discoverer: Sending to Pipeline ->

: Recv Path
: Traversing
discoverer: Testing ->
dis erer: ing to Pipeline -» ; /folde 1lloworld.txt
renderer: Speed: e Data: eMb/ processed: 2/2, Files scanned:
Da Mb pro se 2 i scanned: :
Da Mb /@ processe
pro se / i scanned: :
pro sed: 2/ i anned: :
cluster: terminated
der Speed: ©.00 : @Mb/eMb, processed: 2/ iles scanned:
ender Time taken: c 4846635
: Platform Shutdown
Finished

ALPHV

There are several other options: network discovery and propagation (supported only in Windows), the ability to
encrypt only specific file paths, advanced logging, user interface, and more.

Briefly, the sample will attempt to identify whether it runs on an ESXi system, run some commands via the esxcli
utility (if it's an ESXi hypervisor system), and then proceed to encrypting files. It speeds up the encryption by
spawning multiple threads. When encrypting files, it will drop a ransom note in every folder it touches.

There are quite a few nuances to this behavior, which we detail in the following sections.

2.2.2. Access token and config extraction

On March 16, researchers at vx-underground noticed that ALPHV had changed its binary characteristics and that
previous tools for extracting the config file from the malware did not work anymore. Although the incident being
analyzed happened only a day after the new variant was detected, this was already the version used.

Extracting this config is important not only to understand the indicators of compromise specific to the incident
(such as have the attackers been able to obtain legitimate credentials for lateral movement?), but to facilitate the
malware analysis itself.

This malware sample contains a built-in JSON config. However, it is encrypted and it would be quite difficult to
extract it statically. The config is being decrypted at runtime, using the access token argument for generating the
AES-128 decryption key (the —access-token parameter). We found that only the first 8 bytes (or 16 characters) of
the access token are used to decrypt the config.

We have located the encrypted config within the data segment of the sample (in our case, at the offset
0x190969):

.rodata:0000000000190969 rodata_encrypted config db 2Ah ; * DATA XREF ub_B4CE043724
.rodata:000000000013026A db 1Fh
.rodata:000000000013056E db 70h ; p
rodata:000000000019026C de 27h ; '
.rodata:000000000019096D de 70h ; p
.rodata:000000000019096E de 3Ch ; <
.rodata:000000000013096F db OAAh
.rodata:0000000000190270 de 55h ; U
.rodata:0000000000190971 db 0Elh
.rodata:0000000000130272 dbe 5Ch ;
.rodata:0000000000130273 dbe 32h
db

.rodata:0000000000190974

________________ _i%? H -

To find the proper location in the data segment, we have looked at the cross references to data “blobs” with high
entropy, under the assumption that the encrypted data should have higher entropy than code or strings. After a
while, we could identify several such “blobs”, and, by carefully following the cross-references, we could identify
that one of them is used by the assembly fragment that performs the config decryption routines.

The cryptographic algorithm looks like AES-128, and the first 8 bytes (16 characters) of the access token are
used to generate the decryption key:

<)FORESCOUT ALPHV 7

https://twitter.com/vxunderground/status/1504207503734804484
https://github.com/f0wl/blackCatConf

text:00000000000F748B

text :00000000000F748B decrypt config: ; CODE XREF: maybe_generate_aes_key+625:]
text : 00000000000FT748B movups xmm0, xmmword ptr [rbx] ; rbx contains the first 16 characters of the access token
text :00000000000FT48E movaps [rsp+838h+var_8_bytes_2], xmmO

text :00000000000F7493 movaps [rsp+838h+ptr_B8_bytes], xmm0

text :00000000000F 7498 lea rdi, [rsp+838h+var_some_buffer]

text :00000000000FT74A3 lea rsi, [rsp+838hiptr_8_bytes]

text:00000000000F 7T4AB call aes_keygen_assist_1 ; rdi contains the 16 bytes of the config
text:00000000000F74B0 pshufd xmmO, [rsp+838h+var_some_buffer], OFFh ; take the lowest 4 bytes from the AES key and shuffle them into xmm0
text:00000000000F T4BA movdga xmm3, [rsp+838h+var_8_bytes_2] ; 16 chars of the access token -> xmm3
text:00000000000F74C0 movdga xmml, xmm3

text:00000000000F74C4 pslldg =xmml, 4

text : 00000000000F74CS pxor xmml, xmm3

text :00000000000F74CD movdga xmm2, xmm3

text :00000000000F74D1 pslldg xmm2, 8

text :00000000000F74D6 pslldg xmm3, OCh

text:00000000000F74DB pxor xmm3, xmm2

text:00000000000F74DF pxor xmm3, xmml

text:00000000000FT4E3 pxor xmm3, xmm0

text:00000000000FT4E7 movdga [rsp+838h+var_808], xmm3

text :00000000000F T4ED movdga [rsp+838h+var_358], xmm3

text : 00000000000FT74F6 lea rdi, [rsp+838h+var_some_buffer]

text :00000000000F T4FE lea rsi, [rsp+838h+var_358]

text :00000000000F7506 call aes_inv_mix_columns

text :00000000000F750B movaps xmm0, [rsp+838h+var_some_buffer]

text :00000000000F7513 movaps [rsp+838h+var_778], xmmO

text:00000000000F751B movaps xmm0O, [rsp+838h+var_808]

text:00000000000F7520 movaps [rsp+838h+var_348], xmm0

text:00000000000F 7528 lea rdi, [rsp+838h+var_some_buffer]

text:00000000000F7530 lea rsi, [rsp+838h+var_348]

text :00000000000F 7538 call aes_keygen_assist_2

The config has a fixed maximum length of 8128 bytes, and it is being decrypted with the generated AES-128 key

in a loop, 128 bytes at a time:

-text : 00000000000886E0 decrypt_config loop: ; CODE XREF: sub_B84CE0+3D7F4j
.text:00000000000886E0 movaps xmm0, [rsp+28h+arg_2ES8]
.text:00000000000886EB movaps xmmword ptr [rsp+28h+ptr_buff 8128], xmm0
.text:00000000000886ED movaps [rsp+28h+arg_l1268], xmm0
.text:00000000000886F5 movaps xmm0, cs:some_l6_bytes
.text:00000000000886FC movaps [rsp+28htarg_16_bytes_of_ aes_key_0], xmm0
-text:0000000000088704 mov rdi, rbx

.text:0000000000088707 mov rsi, rl2

.text:000000000008870A mov rdx, rl4

-text :000000000008870D call func_pshufb_wrapper
.text:0000000000088712 movaps xmm0, [rsp+Z8h+arg_10ES8]
.text:000000000008871A movaps [rsp+28h+ptr_after config], xmm0
.text:000000000008871F movdga xmmQ, xmmword ptr [rspt28h+ptr_buff 8128]
.text:0000000000088725 paddg xmm0, cs:some_xmmword_1l
.text:000000000008872D movdga [rsp+28h+arg_1268], xmmO
.text:0000000000088736 movaps xmm0, cs:some_l6_bytes
.text:000000000008873D movaps [rsp+28h+arg_16_bytes_of_aes_key_0], xmm0
.text:0000000000088745 mov rdi, rbx

.text:0000000000088748 mov rsi, rl2

.text:000000000008874B mov rdx, rld4

.text:000000000008874E call func_pshufb_wrapper
.text:0000000000088753 movaps xmm0, [rsp+28h+arg 10ES8]
.text:000000000008875B movaps [rsp+28hiptr_to_size 8128], xmm0
.text:0000000000088763 movdga xmm0, xmmword ptr [rsp+Z8h+ptr_buff 8128]
.text:0000000000088762 paddg xmm0, os:xmmword_1784A0

Favt

sANNNNANAAAARRTTT

mevreena

frani?Rhlare 12681 wmmn

In our case, the config was smaller than the maximum length, and the remaining bytes were padded with space
characters (0x20). Finally, the decrypted config is placed into the heap memory, and can be extracted from it at
runtime using a debugger:

.text :0000000000088B4E after_ config_is_decrypted: ; CODE XREF: sub_84CE0+3D3Et]

.text:0000000000088E4E mov roex, gword ptr [rsp+28h+iptr_teo_size 8128] ; rex <- 0
.text:0000000000088B56 mov [esp+28h+arg_468], el ; 0

.text:0000000000088E5D test rex, reox

.text:0000000000088E60 mev rl5, [rsp+28h+var_l8] ; 64

.text:0000000000088E65 mov rl2, [rsp+Z8h+ptr_config] ; pointer to the decrypted config
text:0000000000088B6D mov rld, [rsp+28h+az0] pointer to the 16 characters of the access token

We were able to extract the config from the heap memory (we had to remove some of the entries, otherwise it
would have been quite lengthy):

<) FORESCOUT ALPHY

8

Even though our sample was compiled for ESXi/Linux, we can still observe a lot of Windows-related entries in the
config. This may be because a default config was used in this attack. From the config we can see that by default it
will attempt to kill ESXi VMs and delete snapshots (the self-propagation and network discovery functionality
seems to be Windows-only). There is some small evidence that the config was customized to our target
environment - esxi_vm_Kill_exclude contains the name of an actual machine from the affected environment
(“DC17).

As we can see from the extracted config, the sample will attempt to kill ESXi virtual machines and delete the
snapshots by default (we can also confirm this after having performed dynamic analysis).

2.2.3. File encryption and everything related to it

We have observed that the malware uses concurrent CPU threads for encryption. This strategy is not new and has
been used by other groups, such as Conti.

Prior to file encryption, the sample checks whether it already has the extension of the encrypted files specified in
the config (“.4rc3twm” in our case). If the file already has the “encrypted” extension, it will not be encrypted. The
following disassembly illustrates this check:

<)FORESCOUT ALPHV 9

https://www.forescout.com/resources/analysis-of-conti-leaks/

.text: 00000000000B3DFC chebk_file_extensicn H
a

CODE XREF: maybe_encrypt_files+181t]

.text:00000000000B3DFC rbx, rbp

.text :00000000000B3DFF mov rdi, rl4 HE->

.text :00000000000B3E02 mov rsi, rbx ; =52

.text :00000000000B3EQS call cs:bemp_ptr ; check file extension against the cone in config
.text :00000000000B3E0B test eax, eax

.text:00000000000B3E0D setz bl

.text :00000000000B3E10 test rlz, rilz

.text:00000000000B3EL3 jz
.text :00000000000B3E1S
.text:00000000000B3E15 loc_B3E15:

short loc_B3E1E

; CODE XREF: maybe_encrypt_files+1881]

.text :00000000000B3E1S mov rdi, rl4 ; ptr

.text:00000000000B3ELE call cs:free_ptr

.text:00000000000B3E1E

.text:00000000000B3E1E loc_B3EI1E: ; CODE XREF: maybe_encrypt_files+18Atj]
.text:00000000000B3E1E ; maybe_encrypt_files+1A3t]
.text:00000000000B3ELE test bl, bl

.text:00000000000B3E20 mov rbp, [rsp+30htvar_20]

.text :00000000000B3E25 lea rl2, [rsp+30h+dest]

-text :00000000000B3E2D jz
.text:00000000000B3E33
-text:00000000000B3E3A
.text :00000000000B3E3E jb

loc_B401D
rax, cs:gword_3C61A0

rax, 3

loc_B3F3A

.text:00000000000B3E44 mov gword ptr [rsp+30h+fd], rbp

.text :00000000000B3EAC lea rax, sub_41740

.text:00000000000B3E53 mov gword ptr [rsp+30h+arg_file_path_len], rax

.text: 00000000000B3ESB mov rax, cs:gword_3C6178

.text:00000000000B3E62 cmp rax, 2

.text :00000000000B3E66 lea rax, off_3C061&

.text:00000000000B3E6D emovz rax, cs:off_3C6038

.text :00000000000B3E7S lea rdi, unk_12EA30

.text:00000000000B3ET7C emovz rdi, es:eff_3C6030

.text:00000000000B3E84 mov gword ptr [rsp 1, 1

.text:00000000000B3E30 mov gword ptr [rsp 1, O

.text : 00000000000B3ESC mov gword ptr [rsp+30h+dest],

.text:00000000000B3EAS lea rcx, ahssertionFaile 3+5Ah ; "locker::core::pipeline::file_worker_poo"
.text : 00000000000B3EAF mov gword ptr [rsp+30h+dest+8], rcx

.text:00000000000B3EBT mov gword ptr [rsp+30h+mode], -

-text :00000000000B3EC3 lea rdx, off 3BE7E0 ; "File already has encrypted extension ->"..

We found some references to the ChaCha20 encryption algorithm in the sample, however, currently we cannot
confirm whether this is the exact encryption algorithm used:

. rodata:oouuooooUl7EDaE alogiFllelogiile db "log-IllelOG FILESs error. renamedsShutdownChaChaZiUHeadOnlyfinlshed '

.rodata:0000000000178D38

; DATA 3

sub_EB4CE0+25A5¢0

From what we have observed, the encryption algorithm used was AES-128. We could not yet completely verify this
assumption as the encryption functionality has complex control flows and will require significant time to fully analyze.
All file encryption activities begin at the following offset (there is a loop that handles the encryption for each file):

.text:

00000000000AC450 encryption_routines_loc:

; CODE XREF: maybe_encrypt_files+361Bip

.text :00000000000AC450 ; maybe_main_function+3FA2ip
.text:00000000000AC450 push rbp

.text:00000000000AC451 push ri5

.text:00000000000AC453 push rl4

.text:00000000000AC455 push ri3

.text:00000000000AC457 push riz

.text:00000000000AC459 push rbx

.text:00000000000AC45A sub rsp, 0OASh

.text:00000000000AC461 mov [rsp+38h], rdx ; maybe ptr to the key or encrypted contents
.text :00000000000AC469 mov [rsp+30h], rsi

.text:00000000000AC471 mov rl4, rdi

.text:00000000000AC474 mov edi, &0h

.text:00000000000AC479 call cs:malloc_ptr ; allocates 128 bytes

Before encrypting any files, the malware will create a file called “RECOVER-{extension}-NOTES.txt” in the
working directory of that file (in our case, “RECOVER-4rc3twm-NOTES.txt"), and populate it with the ransom
message written in the config file. Next, it will proceed to encrypting files.

Each file is being encrypted in two passes, during each pass an "encryption config" is being generated in memory
(note, the config is created before encryption for every target file):

<)FORESCOUT ALPHV 10

https://www.cryptopp.com/wiki/ChaCha20

Eﬁcryptien config generated during the first pass
p

Encryption config generated during the second p
I

1

In particular, the private_key entry contains the key used for encryption (derived from the rest of characters
access token starting at the 17" one), and the finished entry is set to “true” before the last encryption pass. This
evidence leads us to assume that the encryption routines are highly flexible and can be changed from one build of
the same malware to another. Therefore, the following behavior might change significantly from sample to
sample.

We were wondering about the lack of heavy obfuscation in this malware sample. However, the fact that everything,
including the encryption algorithm, can be customized “on-the-fly” makes it already very difficult for anti-virus
software to detect such samples. On the other hand, the lack of heavy obfuscation allows to avoid sacrificing the
file encryption efficiency, which is probably what the authors of the malware are after.

During each pass, the private key in the config is being validated:

.text:00000000000AD497 loc_AD497: ; CODE XREF: func_main_encrypt_function+lDBCtj
.text:00000000000AD437 mov rax, [rsp+arg_30]
.text:00000000000AD49F mov rbp, [rax]
.text:00000000000AD4A2 mov rl4, [rax+10h]
.text:00000000000AD4AE6 lea rdi, [rspt+arg_10]
-text:00000000000AD4AB mov rsi, rbp
.text:00000000000AD4AE mov rdx, rl4
.text:00000000000AD4B1 mov rex, rl2 ; peinter te the json that contains the private key
.text:00000000000AD4B4 mov rg, rl3
-text:00000000000AD4BT call maybe_validate_privkey
.text:00000000000AD4BC cmp [rsptarg_10], O
.text:00000000000AD4C2 jz short privkey_ is_wvalid
.text:00000000000AD4CH lea rdi, unk_18F631 ; src
.text:00000000000AD4CE mov esi, OBh ;on
.text:00000000000AD4D0 call sub_FDF20
.text:00000000000AD4DS mov rl4, rax
.text:00000000000AD4DE mov rbx, rdx
.text:00000000000AD4DE mov rbp, rdx
.text:00000000000AD4DE shr rbp, 8
.text:00000000000AD4E2Z shld rbx, rax, 38h
-text:00000000000AD4ET test rl5, ril5
.text:00000000000AD4EA jnz loc_ADE860
.text:00000000000AD4FO Jmp loc_AD863

.text :00000000000ADAFS | ——— e e
.text:00000000000AD4FS

.text:00000000000AD4FS privkey is wvalid: ; CODE XREF: func_main_encrypt_function+lDF2+:j
.text:00000000000AD4FS test rls, rls

-text:00000000000AD4F8 jz short loc_AD503

.text:00000000000AD4FA mov rdi, ril2 i ptr

.text:00000000000AD4FD call es:free_ptr

<)FORESCOUT ALPHV 11

The first encryption pass starts at the following location (the address of encryption_routines_loc is at the offset

“Oxac450”):
.Etext:00000000000B7278 first encryption_pass_loc: ; CODE XREF: maybe_encrypt_files+35001]
.text:00000000000BT7278 lea rdi, [rsp+30h+fd]
.Eext:00000000000BT7280 mev rsi, rbx
Ltext:00000000000BT7283 mov rdx, [rsp+30htarg_88]
.text:00000000000BT28B call encryption_routines_loc

The second encryption pass starts at the following location (the address of encryption_routines_loc is at the
offset “Oxac450”):

.text:00000000000D9F12 second_encryption_pass_ loc: ; CODE XEEF: maybe main_function+3F&717
.text:00000000000D5F12 lea rdi, [rsp+638hiptr]

.text:00000000000D3F1A mov rsi, rl3

LEext:00000000000D3F1D mev rdx, [rsp+638h+var_5SFE]

.text:00000000000D9F22 call encryption_routines_loc

PR

LAAAAAAAARAATGT AT

— -1 El

The file modifications (encryption) start at the following location:

.text:
ctext:
.text:
.text:
ctext:
.text:
.text:
ctext:
~text:
.text:
ckext:
ctext:
.text:
.text:
ctext:
.text:
.text:
ctext:
~text:
.text:
ckext:
~text:
.text:
.text:
ctext:
.text:
.text:
ctext:
.text:
.text:
ctext:
~text:
.text:
.text:
ctext:
.text:
.text:

00000000000AD7IE garble the file lst time loc:

00000000000ADTIE
00000000000ADT7IE
00000000000ADTAD
00000000000ADTAL
00000000000ADTAS
00000000000ADTAE
00000000000ADTEZ
00000000000ADTEE
00000000000ADTBC
00000000000ADTEE
00000000000ADTC4
00000000000AD7C4 loc_ADT7C4:
00000000000ADTC4
00000000000ADTCT
00000000000ADTCA
00000000000AD7CD
00000000000ADTD2
00000000000ADTDS
00000000000ADT7DS
00000000000ADTDE
00000000000ADTDE
00000000000ADTES
00000000000ADTES
00000000000ADTED
00000000000ADTEFO
00000000000ADTFS
00000000000ADTET
00000000000ADTES
00000000000ADTEC
00000000000ADTFF
00000000000ADE03
00000000000ADE0S
00000000000ADE02
00000000000ADS0OE
00000000000ADE10
00000000000ADE13

bswap

; CODE XREF: func_main_encrypt_function+lFC3tj
; func_main_encrypt_function+20ABt]
ecx

dword ptr [rsp+src], ecx ; append the 4 garbled bytes to the original content of the file
rsi, [rsp+src] ; buf

edx, 4 ;on

edi, [rsp+fd] ; fd

cs:write

r
rax, OFFFFFFFFFFFFFFFFh
short leoc_AD7C4

es:__errno_location_ptr

; CODE XREF: func_main_encrypt_function+20ECt]
rdi, rbx
rsi, riz
rdx, rl3
fune_write_into_file
rld, rax
ridb, 4
short leoc_ADS4C
rl3d
dword ptr [rspt+arg_10], rl3d
rsi, [rsptarg_10]
edx, 4 ; add another garbled 4 bytes (is this some kind of a separator?)
rdi, rbx
fune_write_into_file
al, 3
short loc_ADS822
rbx, rdx
rdi, [rdx)]
rax, [rdx+8]
qword ptr [rax]
rax, [rbx+8)
gword ptr [rax+g], 0
short loc_ADS195
rdi, [rbx]
cs:free_ptr

7 ptr

After the first encryption pass, the malware creates a file “checkpoints-[file-under-encryption].[encrypted-
extension]” (e.g., “checkpoints-helloworld.txt.4rc3twm” in our case), these files seem to contain some status
flags, but we could not decipher their meaning:

% xxd checkpoints-helloworld.txt.4rc3twm

8068 esee

We have also found that the malware tries to communicate with other instances of itself running on the same
machine. To illustrate, if we set up the netcat utility to listen on the UDP port 61069, and trace system calls
related to networking, we will see the following:

<) FORESCOUT

ALPHV 12

-1 EADDRINUSE (Address already in use)

I

CKET, SO_RCVTIMEO OLD,
SOCKET, SO_SNDTIMEO OLD,
250107802100754672

As we can see from the above, the sample first tries to set a UDP socket to listen on the port 61069, this system
calls fails, because we have already taken the port with netcat. Next, it creates a new socket to listen on the port
47759 (this port number is arbitrary), sets the socket options and sends the message
{\"Handshake\"":\"250107802100754672\"} to whoever is listening on the port 61069.

Overall, we see that the malware tries to become a UDP server by listening on the port 61069, when it sees that
the port is busy, it becomes a client. If we run multiple instances at the same time, one of them will become a server,
and will receive messages from other instances.

The function that parses these messages is located at the offset “0x9c780”. For instance, this is a piece of
disassembly, where the Handshake and HandshakeOk messages are processed:

-text:000000000003C8BC loc_3C8RBC: ; CODE XREF: maybe_ parse_incoming_socket_data+C0t]
.text:000000000009C8BEC ; DATA XREF: .rodata:jpt_5CE840ic
-text:000000000003C8BC moev rax, 'kahsdnaH' ; jumptakle 000000000009C840 case 11
.text:000000000009C8BCE xor rax, [rdi]

.text:000000000003C8C3 mev rex, 'kOekahsd'

.text:000000000003C8D3 Xor rex, [rdi+3]

.text:000000000009C8DT oF X, rax

.text:000000000005CEDA jz short loc_2C337

.text:000000000005C8DC mov rcx, 'hChtlaeH'

.text:000000000003C8BES6 xor rex, [rdi]

.text:000000000009C8ED mov rdx, 'kecehChtl'

.text:000000000002C8F3 xor rdx, [rdi+3]

.text:000000000003C8F7 mov al, 2

-text:000000000003C8F3 jmp short loc_3C218&

This simple UDP server supports the following messages:

Message example Comment

{"Handshake", [id]} This seems to be a handshake message when a client tries to communicate with
the server.
{"HandshakeOKk", [id]} This is a response to a handshake message (as we have seen, this response is

not strictly required).

"HealthCheck" Request the status of a client.

{"HealthCheckOKk": [either | Status message from a client; "Online" - client is busy with something (e.g., file

"Online" or "Idle"T} encryption), "ldle" - client is doing nothing.
{"TryPath":[file path]} ask the server (maybe also a client) to encrypt specific file path.
“Shutdown” kill the client/server socket.

The most interesting message here is “TryPath”. A client that is unable to encrypt a file/folder (e.g., due to
insufficient privileges) will send the corresponding “TryPath” message, and the server will attempt to encrypt this
file instead (provided, it has corresponding privileges). The only requirement for this to work is that the server
must be started with the “--propagated” command line argument.

<)FORESCOUT ALPHV 13

It may also be possible that if the server does not have sufficient privileges to encrypt a path, it will retransmit the
“TryPath” command to other clients. However, we were unable to confirm this behavior. Overall, this seems to be
an additional measure from the malware authors to make the file encryption as quick and as efficient as possible.

2.2.4. ESXi commands

The malware sample under analysis was compiled for ESXi servers and it may execute some relevant commands
on those targets. A quick string analysis reveals the commands:

.rodata:000000000013015D aBinEsxclilogEs db '"/binfesxclilog | | esxcli —--formatter=csv --format-param=fields=="

.redata: 0o01%012D ATA 0:lec_T3ECS

.rodata: 0015%015D : sub 5010: 1o Tio ...

.rodata: 00135013D db ""WorldID,DisplayName" vm process list | awk —-F "\"#_\"*" ' 2Th, '{"
.rodata: 0013013D db 'system("esxcli vm process kill --type=force —--world-id="$§1)}',27h
.rodata: 00150150 db "for i in “wvim-cmd vmsve/getallvms| awk ',27h, '{print$1}',27h,"'";d"
.rodata: 001%013D db 'o vim-cmd vmsve/snapshot.removeall $i & doneEsxiVersionmajorminer’
.rodata: 0019013D db 'patch/rustc/e0l2al?ld768adedalee36a92ef8b22d51920154/library/std/"
.rodata: 00150150 db 'sre/syne/mpse/sync.rsassertion failed: guard.canceled.is_none ()ls’
.rodata: 001%013D db "lwutassertion failed: guard.buf.size() > 0 || (deadline.is_some ()"
.rodata: 0013013D db " && Iwoke_up after_waiting)assertion failed: guard.gqueue.dequeue ('
.rodata: 00150150 db ").is_none()',0

.rodata:000 align 20h

Thus, the sample attempts to execute several commands using esxclilog and esxcli utilities, in particular:

vm process list

The above commands shutdown all virtual machines running on the ESXi system and delete all their snapshots.
Note, these commands will be executed only if the “/bin/esxcli” binary is available, otherwise, the sample will
simply proceed with file encryption and other routines (e.g., the files will be encrypted all the same). This allows
us to assume that, in principle, any Linux system is a legitimate target for this ransomware.

If we trace the system calls, we would see that the sample indeed looks for the presence of this binary:

statx(AT_FDCWD, "/bin/esxcli™, AT _STATX SYNC_AS STAT, STATX ALL, @x7fff78laelc@) = -1 ENOENT (No such file or directory)

If the binary is found, prior to launching the above commands, the malware will attempt to identify the version of
ESXi by running the “uname -r” command. Consider the following example:

<)FORESCOUT ALPHV 14

MASTER [INFO] locker:: k: Starting Supervisor

MASTER [INFO] locker:: Starting Discoverer

MASTER [INFO] locker:: ck: Starting File Unlockers

MASTER [INFO] locker:: ck: Starting File Pr ssing Pipeline

MASTER [INFO] locker:: :pipeline: :chunk_workers pervisor: spawned_worke

MASTER [INFO] locker:: ipeline::file_w r_pool _file_dispat rs
7 MASTER [INFO] locker:: e::pipeline: :file_worker_pool: wned_chunk_work_infastructure=2

MASTER [INFO] locker:: k: Detecting Other

MASTER [INFO] locker:: ck: Starting Cluster

MASTER [INFO] locker:: :

MASTER [INFO] locker:: 20

MASTER [INFO] locker:: is a Master Process

MASTER [INFO] locker:: ck: Starting Platform

MASTER [INFO] locker:: H inux::command: spawn=uname -r >

MASTER [INFO] locker:: i i: EsxiVersion::detect=EsxiVersion {

MASTER [INFO] encrypt lib::linu Killing VMS

MASTER [INFO] encrypt lib::1linux: Waiting for ESXi Preparation...
7 MASTER [INFO] locker:: :
" vm p

t [INFO] oH- k: Pre Loop
MASTER [INFO] locker:: : Main loop
MASTER [INFO] locker:: : rer: Recv Path -»> fhome/user/folder/
MASTER [INFO] locker:: luster: terminating
MASTER [INFO] locker:: ::cluster: terminated
MASTER [INFO] locker:: e: £ ata: @Mb/eMb, Files processed: 8/@, Files scanned:
MASTER [INFO] locker:: irenderer: Time taken: 1.2 :
MASTER [INFO] locker:: k: Platform Shutdown
MASTER [INFO] encrypt_lib::linux: Removing Snapshots
MASTER [INFO] locker::core: linux::command: run_null=for i in ~vim-cmd
md vmswvc/snapshot.removeall
MASTER [INFO] locker::core: ¢: Finished

We have found an interesting bug in this sample. To trigger it, one should replace (or create) esxcli with a
dummy binary that does nothing and always returns “true” (“/bin/true” is a perfect candidate).

Next, when we run the sample, it will assume that it runs in an ESXi system and will attempt to execute the
commands that kill VMs and delete VM shapshots (see above). Remember that our bogus esxcli binary does
nothing but returns “true” to any request - in this case it seems the malware executing reaches some internal error
state and finishes its execution before it is able to reach the file encryption functionality.

To sum it up: if a dummy esxcli binary is present on a Linux system, no file will ever be encrypted when one runs
this malware. While it is how this can be leveraged on real ESXi systems (which depend on a functioning esxcli
binary), this can be a workaround to prevent file encryption by this sample for other Linux systems that don't
require the presence of the legitimate esxcli binary.

3. 1loCs

loC l Type ’ Description

Oea5dfd5682892d6d84c9775f89faad0c3c8ecce89dfbba010a61a87b258969¢e | File hash SHA256 hash
of the sample

78.128.113.10 IP address Adversary IP
used to
download

Virtual Assist

4vendeta.com Domain Domain name
used by the
adversary

<)FORESCOUT ALPHV 15

msg=Login uniqueness enforcement -- prior active session terminated

SonicWall
SRA log
message

Session
hijacking

“Mozilla/5.0 (iPhone; CPU iPhone OS 14 _4 2 like Mac OS X)
AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0.3 Mobile/15E148
Safari/604.1”

SonicWall
SRA log
User Agent

Used to
download
Virtual Assist
(computer
application)

Local (127.0.0.1) UDP sockets communicating via the port 61069.

Network
connection

Local UDP
Server used
for distributed
file encryption

esxcli --formatter=csv --format-param=fields=="WorldID,DisplayName" vm
process list | grep -vi ",DC1,"| awk -F "\"* \"*" {system("esxcli vm process Kill -
-type=force --world-id="$1)}

Command

ESXi
command for
stopping virtual
machines (this
is specific to
each sample,
as it contains
the excluded
VMs, “DC1”in
this case)

for i in “vim-cmd vmsvc/getallvms| awk {print$1}";do vim-cmd
vmsvc/snapshot.removeall $i & done

Command

Shell script
command for
deleting ESXi
virtual machine
shapshots

4. Mitigation Recommendations

e Patch network infrastructure devices, especially Internet-facing ones, since those are often used for initial

access.
e Monitor external access from unknown IP addresses.
e Check for the presence of known IoCs in the network.
e Maintain backups of servers, including virtual machine snapshots.

5. References

¢ https://www.crowdstrike.com/blog/how-ecrime-groups-leverage-sonicwall-vulnerability-cve-

2019-7481/
e https://www.varonis.com/blog/blackcat-ransomware

<) FORESCOUT

ALPHV 16

https://www.crowdstrike.com/blog/how-ecrime-groups-leverage-sonicwall-vulnerability-cve-2019-7481/
https://www.crowdstrike.com/blog/how-ecrime-groups-leverage-sonicwall-vulnerability-cve-2019-7481/
https://www.varonis.com/blog/blackcat-ransomware

© 2022 Forescout Technologies, Inc. All rights reserved. Forescout Technologies, Inc. is a Delaware corporation. A list of our trademarks and

patents is available at www.forescout.com/company/legal/intellectual-property-patents-trademarks. Other brands, products or service names
may be trademarks or service marks of their respective owners.

<)FORESCOUT ALPHV 17

	1. Executive Summary
	2. Technical Analysis
	2.1. Initial Access via SonicWall SRA Firewall
	2.2. VMware ESXi Ransomware
	2.2.1. Overall behavior
	2.2.2. Access token and config extraction
	2.2.3. File encryption and everything related to it
	2.2.4. ESXi commands

	3. IoCs
	4. Mitigation Recommendations
	5. References

