

Analysis of an ALPHV
incident

Breaking Down the Complexity of the Most
Sophisticated Ransomware

ALPHV 2

Contents
1. Executive Summary .. 3

2. Technical Analysis... 4

2.1. Initial Access via SonicWall SRA Firewall .. 4

2.2. VMware ESXi Ransomware ... 4

2.2.1. Overall behavior ... 5

2.2.2. Access token and config extraction .. 7

2.2.3. File encryption and everything related to it .. 9

2.2.4. ESXi commands ... 14

3. IoCs ... 15

4. Mitigation Recommendations .. 16

5. References .. 16

ALPHV 3

1. Executive Summary
This briefing is the result of an analysis of files and tools used by an affiliate of the ALPHV ransomware group

during an attack on a VMware ESXi environment. The ransomware was deployed on March 17, 2022, and the

incident involved two distinct exploitations: penetrating an Internet-exposed SonicWall firewall to gain initial

access to the network (step 1 in the figure below) and then moving to and encrypting a VMware ESXi virtual farm

(step 2).

ALPHV, also known as Black Cat and Noberus, is a Ransomware-as-a-Service gang first discovered in

November 2021. They have hit more than 50 organizations and are distinguished for the following reasons:

• Using a ransomware written in Rust. This is part of a trend of attackers moving from C/C++ to other

languages such as Golang, Rust, DLang and Nim. The use of a different language helps to avoid

detection and makes malware analysis more difficult due to the lack of analysis tools.

• Using a binary payload that is created for each specific target. This binary includes a config file that

contains information about the target environment. This step also helps to avoid detection and makes file

hash IoCs less usable, since each new binary will be slightly different from the previous one.

• Supporting Windows and Linux variants, including specific capabilities for VMware ESXi hosts (such as

stopping/deleting virtual machines and deleting snapshots).

Previous reports have noticed that although the group is relatively new, it was probably created by former

members of other gangs, with the possibility of it being a rebranding of BlackMatter, a successor of the infamous

REvil and DarkSide groups. Their preference for attacking network infrastructure devices and hosts with exposed

RDP has also been documented.

This briefing presents a technical analysis of the incident focusing on the initial access via SonicWall SRA

(Section 2.1) and the ALPHV ransomware sample deployed at an ESXi server (Section 2.2). From this analysis,

we extract indicators of compromise (Section 3) and mitigation recommendations (Section 4) to help network

defenders to detect and mitigate attacks from ALPHV and other similar ransomware groups.

ALPHV became widely known as “the most sophisticated ransomware of 2021.” New findings detailed in this

report break down the malware’s sophisticated behavior and present ways to avoid damage, including:

https://malpedia.caad.fkie.fraunhofer.de/details/win.blackcat
https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/noberus-blackcat-alphv-rust-ransomware
https://blogs.blackberry.com/en/2021/07/old-dogs-new-tricks-attackers-adopt-exotic-programming-languages
https://blogs.blackberry.com/en/2021/07/old-dogs-new-tricks-attackers-adopt-exotic-programming-languages
https://www.varonis.com/blog/alphv-blackcat-ransomware
https://krebsonsecurity.com/2022/01/who-wrote-the-alphv-blackcat-ransomware-strain/

ALPHV 4

• The description of how to extract the config file embedded in the malware, which contains information that

can be used in incident response, such as harvested credentials or virtual machines spared from

encryption (Section 2.2.2).

• The most detailed analysis of the encryption behavior of ALPHV, including the description of a previously

unreported communication protocol used to distribute encryption between multiple instances of the

malware. This is the first time we have observed this behavior in a ransomware, once again showing

ALPHV’s ingenuity (Section 2.2.3).

• An error-handling bug in the malware that allows to prevent encryption on Linux targets by creating a

dummy esxcli executable (Section 2.2.4).

2. Technical Analysis

2.1. Initial Access via SonicWall SRA Firewall

ALPHV’s affiliates use of network infrastructure devices for initial access is well known. In this incident, we believe

the adversary leveraged CVE-2019-7481, an SQL injection vulnerability affecting Secure Remote Access (SRA)

4600 devices, to harvest credentials and gain initial access to the SonicWall. The actions performed lead us to

believe that reconnaissance was performed prior to the infection on March 17, 2022.

After initial access, the adversary used a Bulgarian IP address of 78.128.113.10 and hostname of “ip-113-

10.4vendeta.com” to download and install SonicWall’s Virtual Assist module. The Virtual Assist app is traditionally

used for basic operations, secure remote access, and file transfer between a technician and a customer. The IP

address is from a shared hosting pool belonging to RACKWEB-NET which leads us to believe this is a burner IP

address.

The adversary was able to execute code that waited for a legitimate user to connect and then hijacked the

existing session. The adversary was able to change the password of the account and propagated into the ESXi

farm to launch the ransomware attack.

2.2. VMware ESXi Ransomware

After gaining access to the ESXi servers, the adversary managed to deploy the ransomware payload. After that

operation, most of the log files were encrypted, but the shell history was kept intact. From the shell history, we

were able to immediately understand four things:

• The adversary manually launched commands at the target. This is evidenced by typos found during the

execution of commands, as shown below

• The adversary probably had a Cyrillic keyboard layout installed, which is consistent with the Bulgarian IP

address used for initial access. This is evidenced by one of those typos containing a Cyrillic character.

These kinds of typos are common when switching between alphabets

https://nvd.nist.gov/vuln/detail/CVE-2019-7481

ALPHV 5

• The unique access token used to run the malware binaries (/tmp/32 and /tmp/64) was left in the history.

• The attackers attempted to launch several instances of the malware sample at the same time. As the

malware is designed to distribute file encryption tasks by communicating to its various instances over

local sockets, this makes sense (we detail this behavior in Section 2.2.3). However, since the attackers

did not use the “--propagated” command line option, this functionality would not work.

In possession of the access token, we were able to manually analyze the ransomware with several goals:

understand the overall behavior of the sample, extract the embedded config file, desribe the file encryption

functionality, and understand the OS-specific commands that the sample executes.

2.2.1. Overall behavior
Our sample (SHA256 hash is 0ea5dfd5682892d6d84c9775f89faad0c3c8ecce89dfbba010a61a87b258969e) is

compiled to run on any modern x64 Linux system. It contains many compiled-in Rust libraries, as well as glibc

code. The debug symbols are stripped and some of the content of the malware is encrypted. This version of the

ALPHV malware has been created to target ESXi hypervisor systems.

Please note that all the binary offsets given in the subsections below may only be true for this specific

sample. Please also note that we do not show full disassembly listings since they can be quite lengthy,

instead we show only fragments.

The malware executable has an extensive set of command line options shown below:

https://www.vmware.com/nl/products/esxi-and-esx.html

ALPHV 6

The executable requires a proper access token (the –access-token parameter) to function. It must be run as

follows:

If no valid access token is provided, the malware will display the “Invalid config” error and will not execute any

malicious functionality. This access token should be known to the attacker only, and it is used to derive the AES-

128 key for decrypting the internal config of the malware. We will detail this in the Section 2.2.2.

The malware supports logging via the -v command line option, which is quite handy for understanding its behavior.

Here is how the logging output looks like:

ALPHV 7

There are several other options: network discovery and propagation (supported only in Windows), the ability to

encrypt only specific file paths, advanced logging, user interface, and more.

Briefly, the sample will attempt to identify whether it runs on an ESXi system, run some commands via the esxcli

utility (if it's an ESXi hypervisor system), and then proceed to encrypting files. It speeds up the encryption by

spawning multiple threads. When encrypting files, it will drop a ransom note in every folder it touches.

There are quite a few nuances to this behavior, which we detail in the following sections.

2.2.2. Access token and config extraction
On March 16, researchers at vx-underground noticed that ALPHV had changed its binary characteristics and that

previous tools for extracting the config file from the malware did not work anymore. Although the incident being

analyzed happened only a day after the new variant was detected, this was already the version used.

Extracting this config is important not only to understand the indicators of compromise specific to the incident

(such as have the attackers been able to obtain legitimate credentials for lateral movement?), but to facilitate the

malware analysis itself.

This malware sample contains a built-in JSON config. However, it is encrypted and it would be quite difficult to

extract it statically. The config is being decrypted at runtime, using the access token argument for generating the

AES-128 decryption key (the –access-token parameter). We found that only the first 8 bytes (or 16 characters) of

the access token are used to decrypt the config.

We have located the encrypted config within the data segment of the sample (in our case, at the offset

0x190969):

To find the proper location in the data segment, we have looked at the cross references to data “blobs” with high

entropy, under the assumption that the encrypted data should have higher entropy than code or strings. After a

while, we could identify several such “blobs”, and, by carefully following the cross-references, we could identify

that one of them is used by the assembly fragment that performs the config decryption routines.

The cryptographic algorithm looks like AES-128, and the first 8 bytes (16 characters) of the access token are

used to generate the decryption key:

https://twitter.com/vxunderground/status/1504207503734804484
https://github.com/f0wl/blackCatConf

ALPHV 8

The config has a fixed maximum length of 8128 bytes, and it is being decrypted with the generated AES-128 key

in a loop, 128 bytes at a time:

In our case, the config was smaller than the maximum length, and the remaining bytes were padded with space

characters (0x20). Finally, the decrypted config is placed into the heap memory, and can be extracted from it at

runtime using a debugger:

We were able to extract the config from the heap memory (we had to remove some of the entries, otherwise it

would have been quite lengthy):

ALPHV 9

Even though our sample was compiled for ESXi/Linux, we can still observe a lot of Windows-related entries in the

config. This may be because a default config was used in this attack. From the config we can see that by default it

will attempt to kill ESXi VMs and delete snapshots (the self-propagation and network discovery functionality

seems to be Windows-only). There is some small evidence that the config was customized to our target

environment - esxi_vm_kill_exclude contains the name of an actual machine from the affected environment

(“DC1”).

As we can see from the extracted config, the sample will attempt to kill ESXi virtual machines and delete the

snapshots by default (we can also confirm this after having performed dynamic analysis).

2.2.3. File encryption and everything related to it
We have observed that the malware uses concurrent CPU threads for encryption. This strategy is not new and has

been used by other groups, such as Conti.

Prior to file encryption, the sample checks whether it already has the extension of the encrypted files specified in

the config (“.4rc3twm” in our case). If the file already has the “encrypted” extension, it will not be encrypted. The

following disassembly illustrates this check:

https://www.forescout.com/resources/analysis-of-conti-leaks/

ALPHV 10

We found some references to the ChaCha20 encryption algorithm in the sample, however, currently we cannot

confirm whether this is the exact encryption algorithm used:

From what we have observed, the encryption algorithm used was AES-128. We could not yet completely verify this

assumption as the encryption functionality has complex control flows and will require significant time to fully analyze.

All file encryption activities begin at the following offset (there is a loop that handles the encryption for each file):

Before encrypting any files, the malware will create a file called “RECOVER-{extension}-NOTES.txt” in the

working directory of that file (in our case, “RECOVER-4rc3twm-NOTES.txt”), and populate it with the ransom

message written in the config file. Next, it will proceed to encrypting files.

Each file is being encrypted in two passes, during each pass an "encryption config" is being generated in memory

(note, the config is created before encryption for every target file):

https://www.cryptopp.com/wiki/ChaCha20

ALPHV 11

In particular, the private_key entry contains the key used for encryption (derived from the rest of characters

access token starting at the 17th one), and the finished entry is set to “true” before the last encryption pass. This

evidence leads us to assume that the encryption routines are highly flexible and can be changed from one build of

the same malware to another. Therefore, the following behavior might change significantly from sample to

sample.

We were wondering about the lack of heavy obfuscation in this malware sample. However, the fact that everything,

including the encryption algorithm, can be customized “on-the-fly” makes it already very difficult for anti-virus

software to detect such samples. On the other hand, the lack of heavy obfuscation allows to avoid sacrificing the

file encryption efficiency, which is probably what the authors of the malware are after.

During each pass, the private key in the config is being validated:

ALPHV 12

The first encryption pass starts at the following location (the address of encryption_routines_loc is at the offset

“0xac450”):

The second encryption pass starts at the following location (the address of encryption_routines_loc is at the

offset “0xac450”):

The file modifications (encryption) start at the following location:

After the first encryption pass, the malware creates a file “checkpoints-[file-under-encryption].[encrypted-

extension]” (e.g., “checkpoints-helloworld.txt.4rc3twm” in our case), these files seem to contain some status

flags, but we could not decipher their meaning:

We have also found that the malware tries to communicate with other instances of itself running on the same

machine. To illustrate, if we set up the netcat utility to listen on the UDP port 61069, and trace system calls

related to networking, we will see the following:

ALPHV 13

As we can see from the above, the sample first tries to set a UDP socket to listen on the port 61069, this system

calls fails, because we have already taken the port with netcat. Next, it creates a new socket to listen on the port

`47759` (this port number is arbitrary), sets the socket options and sends the message

{\"Handshake\"":\"250107802100754672\"} to whoever is listening on the port 61069.

Overall, we see that the malware tries to become a UDP server by listening on the port 61069, when it sees that

the port is busy, it becomes a client. If we run multiple instances at the same time, one of them will become a server,

and will receive messages from other instances.

The function that parses these messages is located at the offset “0x9c780”. For instance, this is a piece of

disassembly, where the Handshake and HandshakeOk messages are processed:

This simple UDP server supports the following messages:

Message example Comment

{"Handshake", [id]} This seems to be a handshake message when a client tries to communicate with

the server.

{"HandshakeOk", [id]} This is a response to a handshake message (as we have seen, this response is

not strictly required).

"HealthCheck" Request the status of a client.

{"HealthCheckOk": [either

"Online" or "Idle"]}

Status message from a client; "Online" - client is busy with something (e.g., file

encryption), "Idle" - client is doing nothing.

{"TryPath":[file path]} ask the server (maybe also a client) to encrypt specific file path.

“Shutdown” kill the client/server socket.

The most interesting message here is “TryPath”. A client that is unable to encrypt a file/folder (e.g., due to

insufficient privileges) will send the corresponding “TryPath” message, and the server will attempt to encrypt this

file instead (provided, it has corresponding privileges). The only requirement for this to work is that the server

must be started with the “--propagated” command line argument.

ALPHV 14

It may also be possible that if the server does not have sufficient privileges to encrypt a path, it will retransmit the

“TryPath” command to other clients. However, we were unable to confirm this behavior. Overall, this seems to be

an additional measure from the malware authors to make the file encryption as quick and as efficient as possible.

2.2.4. ESXi commands
The malware sample under analysis was compiled for ESXi servers and it may execute some relevant commands

on those targets. A quick string analysis reveals the commands:

Thus, the sample attempts to execute several commands using esxclilog and esxcli utilities, in particular:

The above commands shutdown all virtual machines running on the ESXi system and delete all their snapshots.
Note, these commands will be executed only if the “/bin/esxcli” binary is available, otherwise, the sample will
simply proceed with file encryption and other routines (e.g., the files will be encrypted all the same). This allows
us to assume that, in principle, any Linux system is a legitimate target for this ransomware.

If we trace the system calls, we would see that the sample indeed looks for the presence of this binary:

If the binary is found, prior to launching the above commands, the malware will attempt to identify the version of
ESXi by running the “uname -r” command. Consider the following example:

ALPHV 15

We have found an interesting bug in this sample. To trigger it, one should replace (or create) esxcli with a
dummy binary that does nothing and always returns “true” (“/bin/true” is a perfect candidate).

Next, when we run the sample, it will assume that it runs in an ESXi system and will attempt to execute the
commands that kill VMs and delete VM shapshots (see above). Remember that our bogus esxcli binary does
nothing but returns “true” to any request - in this case it seems the malware executing reaches some internal error
state and finishes its execution before it is able to reach the file encryption functionality.

To sum it up: if a dummy esxcli binary is present on a Linux system, no file will ever be encrypted when one runs
this malware. While it is how this can be leveraged on real ESXi systems (which depend on a functioning esxcli
binary), this can be a workaround to prevent file encryption by this sample for other Linux systems that don't
require the presence of the legitimate esxcli binary.

3. IoCs

IoC Type Description

0ea5dfd5682892d6d84c9775f89faad0c3c8ecce89dfbba010a61a87b258969e File hash SHA256 hash

of the sample

78.128.113.10 IP address Adversary IP

used to

download

Virtual Assist

4vendeta.com Domain Domain name

used by the

adversary

ALPHV 16

msg=Login uniqueness enforcement -- prior active session terminated SonicWall

SRA log

message

Session

hijacking

“Mozilla/5.0 (iPhone; CPU iPhone OS 14_4_2 like Mac OS X)

AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0.3 Mobile/15E148

Safari/604.1”

SonicWall

SRA log

User Agent

Used to

download

Virtual Assist

(computer

application)

Local (127.0.0.1) UDP sockets communicating via the port 61069. Network

connection

Local UDP

Server used

for distributed

file encryption

esxcli --formatter=csv --format-param=fields=="WorldID,DisplayName" vm

process list | grep -vi ",DC1,"| awk -F "\"*,\"*" '{system("esxcli vm process kill -

-type=force --world-id="$1)}

Command ESXi

command for

stopping virtual

machines (this

is specific to

each sample,

as it contains

the excluded

VMs, “DC1” in

this case)

for i in `vim-cmd vmsvc/getallvms| awk '{print$1}'`;do vim-cmd

vmsvc/snapshot.removeall $i & done

Command Shell script

command for

deleting ESXi

virtual machine

snapshots

4. Mitigation Recommendations
• Patch network infrastructure devices, especially Internet-facing ones, since those are often used for initial

access.

• Monitor external access from unknown IP addresses.

• Check for the presence of known IoCs in the network.

• Maintain backups of servers, including virtual machine snapshots.

5. References

• https://www.crowdstrike.com/blog/how-ecrime-groups-leverage-sonicwall-vulnerability-cve-

2019-7481/

• https://www.varonis.com/blog/blackcat-ransomware

https://www.crowdstrike.com/blog/how-ecrime-groups-leverage-sonicwall-vulnerability-cve-2019-7481/
https://www.crowdstrike.com/blog/how-ecrime-groups-leverage-sonicwall-vulnerability-cve-2019-7481/
https://www.varonis.com/blog/blackcat-ransomware

ALPHV 17

© 2022 Forescout Technologies, Inc. All rights reserved. Forescout Technologies, Inc. is a Delaware corporation. A list of our trademarks and

patents is available at www.forescout.com/company/legal/intellectual-property-patents-trademarks. Other brands, products or service names

may be trademarks or service marks of their respective owners.

	1. Executive Summary
	2. Technical Analysis
	2.1. Initial Access via SonicWall SRA Firewall
	2.2. VMware ESXi Ransomware
	2.2.1. Overall behavior
	2.2.2. Access token and config extraction
	2.2.3. File encryption and everything related to it
	2.2.4. ESXi commands

	3. IoCs
	4. Mitigation Recommendations
	5. References

